Skip to main content
Log in

Optimal uncertainty reduction for multi-disciplinary multi-output systems using sensitivity analysis

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

We present a sensitivity analysis based uncertainty reduction approach, called Multi-dIsciplinary Multi-Output Sensitivity Analysis (MIMOSA), for the analysis model of a multi-disciplinary engineering system decomposed into multiple subsystems with each subsystem analysis having multiple inputs with reducible uncertainty and multiple outputs. MIMOSA can determine: (1) the sensitivity of system and subsystem outputs to input uncertainties at both system and subsystem levels, (2) the sensitivity of the system outputs to the variation from subsystem outputs, and (3) the optimal “investment” required to reduce uncertainty in inputs in order to obtain a maximum reduction in output variations at both the system and subsystem levels. A numerical and an engineering example with two and three subsystems, respectively, have been used to demonstrate the applicability of the MIMOSA approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acar E, Haftka RT, Johnson TF (2007) Tradeoff of uncertainty reduction mechanisms for reducing weight of composite laminates. J Mech Des 129(3):266–274. doi:10.1115/1.2406097

    Article  Google Scholar 

  • Agarwal H, Renaud JE, Preston EL, Padmanabhan D (2004) Uncertainty quantification using evidence theory in multidisciplinary design optimization. Reliab Eng Syst Saf 85(1–3):281–294. doi:10.1016/j.ress.2004.03.017

    Article  Google Scholar 

  • Anonymous (2005) Bosch builds better bluecore battery. http://www.danshapiro.com/blog/archives/000171bosch_builds_better_bluecore_batteries.html. Accessed 14 Dec 2007

  • Aute V, Azarm S (2006) A genetic algorithms based approach for multidisciplinary multiobjective collaborative optimization. AIAA-2006-6953. In: Proceedings of the 11th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization Conference, Portsmouth, Virginia, Sep. 6–8

  • Chen W, Jin R, Sudjianto A (2005) Analytical variance-based global sensitivity analysis in simulation-based design under uncertainty. J Mech Des 127(5):875–886. doi:10.1115/1.1904642

    Article  Google Scholar 

  • Chiralaksanakul A, Mahadevan S (2007) Decoupled approach to multidisciplinary design optimization under uncertainty. Optim Eng 8(1):21–42. doi:10.1007/s11081-007-9014-2

    Article  MATH  MathSciNet  Google Scholar 

  • Deb K (2001) Multiobjective optimization using evolutionary algorithms. Wiley, New York

    Google Scholar 

  • Du X, Chen W (2002) Efficient uncertainty analysis methods for multidisciplinary robust design. AIAA J 40(3):545–552

    Article  Google Scholar 

  • Du X, Chen W (2005) Collaborative reliability analysis under the framework of multidisciplinary systems design. Optim Eng 6(1):63–84. doi:10.1023/B:OPTE.0000048537.35387.fa

    Article  MATH  MathSciNet  Google Scholar 

  • Frey HC, Patil SR (2002) Identification and review of sensitivity analysis methods. Risk Anal 22(3):553–578. doi:10.1111/0272-4332.00039

    Article  Google Scholar 

  • Gu X, Renaud JE, Batill SM (1998) Investigation of multidisciplinary design subject to uncertainties. AIAA Paper 1998–4747. In: Proceedings of the 7th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization Conference, St. Louis, MO, Sep. 2–4

  • Gu X, Renaud JE, Penninger CL (2006) Implicit uncertainty propagation for robust collaborative optimization. J Mech Des 128(4):1001–1013. doi:10.1115/1.2205869

    Article  Google Scholar 

  • Hamby DM (1994) Review of techniques for parameter sensitivity analysis of environmental models. Environ Monit Assess 32(2):135–154. doi:10.1007/BF00547132

    Article  Google Scholar 

  • Helton JC, Davis FJ (2003) Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliab Eng Syst Saf 81(1):23–69. doi:10.1016/S0951-8320(03)00058-9

    Article  Google Scholar 

  • Iman RL, Helton JC (1988) An investigation of uncertainty and sensitivity analysis techniques for computer models. Risk Anal 8(1):71–90. doi:10.1111/j.1539-6924.1988.tb01155.x

    Article  Google Scholar 

  • Kale AA, Haftka RT (2008) Tradeoff of weight and inspection cost in reliability-based structural optimization. J Aircr 45(1):77–85. doi:10.2514/1.21229

    Article  Google Scholar 

  • Kern D, Du X, Sudjianto A (2003) Forecasting manufacturing quality during design using process capability data. In: Proceedings of the IMECE’ 03, ASME 2003 International Mechanical Engineering Congress and RD&D Expo, Washington, DC, Nov. 15–21

  • Kokkolaras M, Mourelatos ZP, Papalambros PY (2006) Design optimization of hierarchically decomposed multilevel systems under uncertainty. J Mech Des 128(2):503–508. doi:10.1115/1.2168470

    Article  Google Scholar 

  • Li M (2007) Robust optimization and sensitivity analysis with multi-objective genetic algorithms: single- and multi-disciplinary applications. Ph.D. Dissertation, University of Maryland, College Park, Maryland

  • Li M, Azarm S (2008) Multiobjective collaborative robust optimization (McRO) with interval uncertainty and interdisciplinary uncertainty propagation. J Mech Des 130(8):081402/1–081402/11. doi:10.1115/1.2936898

    Article  Google Scholar 

  • Li M, Williams N, Azarm S (2009) Interval uncertainty reduction and sensitivity analysis with multi-objective design optimization. J Mech Des 131(3):031007/1–031007/11. doi:10.1115/1.3066736

    Article  Google Scholar 

  • Noor AK, Starnes JH, Peters JM (2000) Uncertainty analysis of composite structures. Comput Methods Appl Mech Eng 185(2–4):413–432. doi:10.1016/S0045-7825(99)00269-8

    Article  MATH  Google Scholar 

  • Padula SL, Gumbert CR, Li W (2006) Aerospace applications of optimization under uncertainty. Optim Eng 7(3):317–328. doi:10.1007/s11081-006-9974-7

    Article  MATH  MathSciNet  Google Scholar 

  • Qiu ZP, Ma Y, Wang XJ (2004) Comparison between non-probabilistic interval analysis method and probabilistic approach in static response problem of structures with uncertain-but-bounded parameters. Commun Numer Methods Eng 20:279–290. doi:10.1002/cnm.668

    Article  MATH  Google Scholar 

  • Rao SS, Cao LT (2002) Optimum design of mechanical systems involving interval parameters. J Mech Des 124(3):465–472. doi:10.1115/1.1479691

    Article  Google Scholar 

  • Saltelli A, Chan K, Scott EM (2000) Sensitivity analysis. Wiley, New York

    MATH  Google Scholar 

  • Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S (2008) Global sensitivity analysis: the primer. Wiley, New York

    MATH  Google Scholar 

  • Smith N, Mahadevan S (2005) Integrating system-level and component-level designs under uncertainty. J Spacecr Rockets 42:752–760

    Article  Google Scholar 

  • Sobieszczanski-Sobieski J (1990) Sensitivity of complex, internally coupled systems. AIAA J 28(1):153–160

    Article  Google Scholar 

  • Sobieszczanski-Sobieski J, Bloebaum C, Hajela P (1991) Sensitivity of control-augmented structure obtained by a system decomposition method. AIAA J 29(2):264–270

    Article  Google Scholar 

  • Sobol IM (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul 55(1–3):271–280. doi:10.1016/S0378-4754(00)00270-6

    Article  MATH  MathSciNet  Google Scholar 

  • Williams N, Azarm S, Kannan PK (2008) Engineering product design optimization for retail channel acceptance. J Mech Des 130(6):061402/1–061402/10. doi:10.1115/1.2898874

    Article  Google Scholar 

  • Wu WD, Rao SS (2007) Uncertainty analysis and allocation of joint tolerances in robot manipulators based on interval analysis. Reliab Eng Syst Saf 92(1):54–64. doi:10.1016/j.ress.2005.11.009

    Article  Google Scholar 

  • Yin X, Chen W (2008) A hierarchical statistical sensitivity analysis method for complex engineering systems design. J Mech Des 130(7):071402/1–071402/10. doi:10.1115/1.2918913

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Azarm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Hamel, J. & Azarm, S. Optimal uncertainty reduction for multi-disciplinary multi-output systems using sensitivity analysis. Struct Multidisc Optim 40, 77–96 (2010). https://doi.org/10.1007/s00158-009-0372-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-009-0372-6

Keywords