Skip to main content
Log in

Analytical robustness assessment for robust design

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Robust design ensures product performances to be insensitive to various uncertainties and therefore results in high quality and productivity. Robustness assessment, which evaluates the variability of performances, is an important and indispensable component of robust design. An accurate and efficient robustness assessment is essential for obtaining a real robust solution. The aim of this paper is to investigate features of model-based methods for robustness assessment in terms of accuracy, efficiency, and reliability. Recommendations on the use of those methods are provided based on the comparison study through example problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ayyub BM, Haldar A (1984) Practical structural reliability techniques. J Struct Eng 110(8):1707–1724

    Google Scholar 

  • Badhrinath K, Rao JR (1994) Bi-level models for optimum designs which are insensitive to perturbations in variables and parameters. Adv Des Autom 69(2):15–23

    Google Scholar 

  • Bain LJ, Engelhardt M (1991) Introduction to probability and mathematical statistics (Duxbury classic series), 2nd edn. Thomson Learning, Boston, MA

    Google Scholar 

  • Beachkofski BK, Grandhi RV (2002) Improved distributed hypercube sampling. 43th AIAA structures, structural dynamics, and materials conference, Denver, CO

  • Belegundu AD, Zhang S (1992) Robustness of design through minimum sensitivity. ASME J Mech Des 114:213–217

    Google Scholar 

  • Beyer WH (1991) CRC standard mathematical tables and formulae, 29th edn. CRC Press, Boca Raton, FL, p 449

    MATH  Google Scholar 

  • Breitung K (1984) Asymptotic approximations for multinormal integrals. J Eng Mech 110(3):357–367

    Article  Google Scholar 

  • Chen W, Yuan C (1999) A probabilistic-based design model for achieving flexibility in design. ASME J Mech Des 121:77–83

    Google Scholar 

  • Chen W, Allen JK, Tsui K-L, Mistress F (1996) A procedure for robust design: minimizing variations caused by noise factors and control factors. ASME J Mech Des 118:478–485

    Google Scholar 

  • Chen W, Wiecek MM, Zhang J (1999) Quality utility—a compromise programming approach to robust design. ASME J Mech Des 121(2):179–187

    Google Scholar 

  • Chen W, Sahai A, Messac A, Sundararaj GJ (2000) Exploration of the effectiveness of physical programming for robust design. ASME J Mech Des 122(2):155–163

    Article  Google Scholar 

  • Crow F (1977) The aliasing problem in computer-generated shaded images. Commun ACM 20(11):799–805

    Article  Google Scholar 

  • D’Errico JR, Zaino NA (1988) Statistical tolerancing using a modification of Taguchi’s method. Technometrics 30(4):397–405

    Article  Google Scholar 

  • Davis PJ, Rabinowitz P (1983) Methods of numerical integration, 2nd edn. Academic, London

    Google Scholar 

  • Dennis JE, Schnabel RB (1983) Numerical methods for unconstrained optimization and nonlinear equations. Prentice-Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

  • Diwekar UM (2003) A novel sampling approach to combinatorial optimization under uncertainty. Comput Optim Appl 24:335–371

    Article  MATH  MathSciNet  Google Scholar 

  • Du X, Chen W (2000a) Methodology for managing the effect of uncertainty in simulation-based deign. AIAA J 38(8):1471–1478

    Google Scholar 

  • Du X, Chen W (2000b) Towards a better understanding of modeling feasibility robustness in engineering design. ASME J Mech Des 122(4):385–394

    Article  Google Scholar 

  • Du X, Chen W (2001) A most probable point based method for uncertainty analysis. J Des Manuf Automation 4(1):47–66

    Google Scholar 

  • Du X, Chen W (2004) Sequential optimization and reliability assessment for probabilistic design. ASME J Mech Des 126(2):225–233

    Article  Google Scholar 

  • Du X, Sudjianto A, Chen W (2004) An integrated framework for optimization under uncertainty using inverse reliability strategy. ASME J Mech Des 126(4):561–764

    Article  Google Scholar 

  • Fang KT, Ma C, Winker P, Zhang Y (2000) Uniform design: theory and application. Technometrics 42(3):237–248

    Article  MATH  MathSciNet  Google Scholar 

  • Fowlkes WY, Creveling CM (1995) Engineering methods for robust product design: using Taguchi methods in technology and product development. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Frey DD, Reber G, Lin Y (2005) A quadrature-based sampling technique for robust design with computer models. Proceedings of IDETC/CIE ASME 2005 design engineering technical conference and computers and information in engineering conference, Long Beach, CA

  • Fu Y, Sahin KH (2004) Better optimization of nonlinear uncertainty systems (BONUS) for vehicle structural design. Ann Oper Res 132:69–84

    Article  MATH  Google Scholar 

  • Giunta AA, Wojtkiewicz SF Jr, Eldred MS (2003) Overview of modern design of experiments methods for computational simulations. AIAA 2003-0649, 41st AIAA aerospace sciences meeting and exhibit, Reno, NV

  • Greenwood WH, Chase KW (1990) Root sum squares tolerance analysis with nonlinear problems. ASME J Eng Ind 112:382–394

    Article  Google Scholar 

  • Gunawan S, Azarm S (2004) Non-gradient based parameter sensitivity estimation for single objective robust design optimization. ASME J Mech Des 126(3):395–402

    Article  Google Scholar 

  • Gunawan S, Azarm S (2005) A feasibility robust optimization method using sensitivity region concept. ASME J Mech Des 127(5):858–865

    Article  Google Scholar 

  • Halton JH (1960) On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer Math 2:84–90

    Article  MathSciNet  Google Scholar 

  • Hamersley JM (1960) Monte Carlo methods for solving multivariate problems. Ann NY Acad Sci 86:844–874

    Article  Google Scholar 

  • Hasofer AM, Lind NC (1974) Exact and invariant second-moment code format. ASCE J Eng Mech Div 100(EM1):111–121

    Google Scholar 

  • Helton JC, Davis FJ (2003) Latin hypercube sampling and the propagation of uncertainty in analysis of complex systems. Reliab Eng Syst Saf 81:23–69

    Article  Google Scholar 

  • Hohenbichler M, Gollwitzer S, Kruse W, Rackwitz R (1987) New light on first- and second-order reliability methods. Struct Saf 4:267–284

    Article  Google Scholar 

  • Huang B, Du X (2006a) A robust design method using variable transformation and Gauss–Hermite integration. Int J Numer Methods Eng 66(12):1841–1858

    Article  MATH  MathSciNet  Google Scholar 

  • Huang B, Du X (2006b) Uncertainty analysis by dimension reduction and saddlepoint approximations. ASME J Mech Des 128(1):26–33

    Article  Google Scholar 

  • Jin R, Du X, Chen W (2003) The use of metamodeling techniques for design under uncertainty. Struct Multidiscipl Optim 25(2):99–116

    Article  Google Scholar 

  • Jin R, Chen W, Sudjianto A (2004) Analytical metamodel-based global sensitivity analysis and uncertainty propagation for robust design. Paper 2004-01-0429, SAE Congress, Detroit, MI, 8–11 March 2004

  • Jin R, Chen W, Sudjianto A (2005) An efficient algorithm for constructing optimal design of computer experiments. J Stat Plan Inference 134(1):268–287

    Article  MATH  MathSciNet  Google Scholar 

  • Jung DH, Lee BC (2002) Development of a simple and efficient method for robust optimization. Int J Numer Methods Eng 53:2201–2215

    Article  MATH  MathSciNet  Google Scholar 

  • Kalagnanam JR, Diwekar UM (1997) An efficient sampling technique for off-line quality control. Technometrics 39:308–319

    Article  MATH  Google Scholar 

  • Lau W (1995) An adaptive supersampling method. In: Chin et al (eds) Image analysis applications and computer graphics, LNCS 1024. Springer Berlin Heidelberg New York, pp 205–214

    Google Scholar 

  • Law AM, Kelton WD (1982) Simulation modeling and analysis. McGraw-Hill, New York

    MATH  Google Scholar 

  • Lee KH, Park GJ (2001) Robust optimization considering tolerances of design variables. Comput Struct 79:77–86

    Article  Google Scholar 

  • Lee K-H, Eom I-S, Park G-J, Lee W-I (1996) Robust design for unconstrained optimization problems using the Taguchi’s method. AIAA J 34(5):1059–1063

    MATH  Google Scholar 

  • Manteufel RD (2000) Evaluating the convergence of Latin hypercube sampling. AIAA-2000-1636. 41st AIAA structures, structural dynamics, and materials conference, Atlanta, GA

  • Manteufel RD (2001) Distributed hypercube sampling algorithm. AIAA-2001-1673. 42th AIAA structures, structural dynamics, and materials conference, Seattle, WA

  • Mckay MD, Conover WJ, Beckman RJ (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2):39–245

    Article  MathSciNet  Google Scholar 

  • Montgomery DC (2005) Design and analysis of experiments, 6th edn. Wiley, New York

    MATH  Google Scholar 

  • Owen A (1997) Monte Carlo variance of scrambled equidistribution quadrature. SIAM J Numer Anal 34(5):1884–1910

    Article  MATH  MathSciNet  Google Scholar 

  • Park GJ, Lee TH, Lee KH, Hwang KH (2006) Robust design: an overview. AIAA J 44(1):181–191

    Article  Google Scholar 

  • Parkinson A, Sorensen C, Pourhassan N (1993) A general approach for robust optimal design. ASME J Mech Des 115:74–80

    Article  Google Scholar 

  • Phade MS (1989) Quality engineering using robust design. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Phadke MS (1989) Quality engineering using robust design. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Pleming JB, Manteufel RD (2005) Replicated Latin hypercube sampling. 46th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, Austin, TX, 19–21 April 2005

  • Putko MM, Taylor III AC, Newman PA, Green LL (2002) Approach for input uncertainty propagation and robust design in CFD using sensitivity derivatives. ASME J Fluids Eng 124:60–69

    Article  Google Scholar 

  • Ramu P, Qu X, Youn BD, Haftka RT, Choi KK (2006) Safety factor and inverse reliability measures. Int J Reliab Saf 1(1/2):155–167

    Article  Google Scholar 

  • Reichert P, Schervish M, Small MJ (2002) An efficient sampling technique for Bayesian inference with computationally demanding models. Technometrics 44(4):318–327

    Article  MathSciNet  Google Scholar 

  • Robinson DG (1998) A survey of probabilistic methods using in reliability, risk, and uncertainty analysis: analytical techniques I. U.S. Sandia Report SAND98-118

  • Rosenblatt M (1952) Remarks on a multivariate transformation. Ann Math Stat 23:470–472

    MathSciNet  MATH  Google Scholar 

  • Rosenblueth E (1975) Point estimates for probability moment. Proc Natl Acad Sci U S A 72(10):3812–3814

    Article  MATH  MathSciNet  Google Scholar 

  • Rubinstein RY (1981) Simulation and the Monte Carlo method. Wiley, New York

    MATH  Google Scholar 

  • Santner TJ, Williams BJ, Notz WI (2003) The design and analysis of computer experiments. Springer series in statistics. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Seo HS, Kwak BM (2002) Efficient statistical tolerance analysis for general distribution using three-point information. Int J Prod Res 40(4):931–944

    Article  MATH  Google Scholar 

  • Simpson TW, Peplinskim J, Koch PN, Allen JK (2001) Metamodels for computer-based engineering design: survey and recommendations 17(2):129–150

    Google Scholar 

  • Sundaresan S, Ishii K, Hourser DR (1995) A robust optimization procedure with variations on design variables and constraints. Eng Optim 24:101–117

    Google Scholar 

  • Suoranta R, Estola K-P (1993) New low variance L-estimator for percentile estimation, IEEE winter workshop on nonlinear digital signal processing, Tampere, Finland

  • Taguchi G (1978) Performance analysis design. Int J Prod Res 16:521–530

    Google Scholar 

  • Taguchi G (1987) System of experimental design, vol 1 and 2. Kraus International, New York

    Google Scholar 

  • Taguchi G (1993) Taguchi on robust technology development: bringing quality engineering upstream. ASME, New York

    Google Scholar 

  • Taguchi G, Chowdhury S, Taguchi S (1999) Robust engineering: learn how to boost quality while reducing costs & time to market. McGraw-Hill, New York

    Google Scholar 

  • Thaweepat B, Cao J, Chen W (2004) A weighted three-point-based strategy for variance estimation. Proceedings of ASME 2004 design engineering technical conference and computers and information in engineering conference, Salt Lake, UT

  • Tu J, Choi KK (1999) A new study on reliability based design optimization. ASME J Mech Des 121(4):557–564

    Google Scholar 

  • Wang L, Beeson D, Wiggs G (2004) Efficient and accurate point estimate method for moments and probability distribution. 10th AIAA/ISSMO multidisciplinary analysis and optimization conference, Albany, New York, 30 August–1 September 2004

  • Weiss MR (1999) Data structures & algorithm analysis in C++, 2nd edn. Addison-Wesley, Reading, MA

    Google Scholar 

  • Xu H, Rahman S (2004) A generalized dimension-reduction method for multidimensional integration in stochastic mechanics. Int J Numer Methods Eng 60(12):1992–2019

    Article  Google Scholar 

  • Youn BD, Choi KK, Park YH (2003) Hybrid analysis method for reliability-based design optimization. ASME J Mech Des 125(2):221–232

    Article  Google Scholar 

  • Yu J, Ishii K (1998) Design optimization for robustness using quadrature factorial models. Eng Optim 30(3/4):203–225

    Google Scholar 

  • Zhao Y-G, Ang AH-S (2003) System reliability assessment by method of Moments. J Struct Eng 129(10):1341–1349

    Article  Google Scholar 

  • Zhao Y-G, Ono T (2000) New point estimates for probability moments. J Eng Mech 126(4):433–436

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, B., Du, X. Analytical robustness assessment for robust design. Struct Multidisc Optim 34, 123–137 (2007). https://doi.org/10.1007/s00158-006-0068-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-006-0068-0

Keywords