Skip to main content
Log in

Unified characterizations of lowness properties via Kolmogorov complexity

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

Consider a randomness notion \({\mathcal{C}}\). A uniform test in the sense of \({\mathcal{C}}\) is a total computable procedure that each oracle X produces a test relative to X in the sense of \({\mathcal{C}}\). We say that a binary sequence Y is \({\mathcal{C}}\)-random uniformly relative to X if Y passes all uniform \({\mathcal{C}}\) tests relative to X. Suppose now we have a pair of randomness notions \({\mathcal{C}}\) and \({\mathcal{D}}\) where \({\mathcal{C} \subseteq \mathcal{D}}\), for instance Martin-Löf randomness and Schnorr randomness. Several authors have characterized classes of the form Low(\({\mathcal{C}, \mathcal{D}}\)) which consist of the oracles X that are so feeble that \({\mathcal{C} \subseteq \mathcal{D}^X}\). Our goal is to do the same when the randomness notion \({\mathcal{D}}\) is relativized uniformly: denote by Low \({\star(\mathcal{C},\mathcal{D})}\) the class of oracles X such that every \({\mathcal{C}}\)-random is uniformly \({\mathcal{D}}\)-random relative to X. (1) We show that \({X\in Low ^\star}\)(MLR, SR) if and only if X is c.e. tt-traceable if and only if X is anticomplex if and only if X is Martin-Löf packing measure zero with respect to all computable dimension functions. (2) We also show that \({X\in Low^\star}\) (SR, WR) if and only if X is computably i.o. tt-traceable if and only if X is not totally complex if and only if X is Schnorr Hausdorff measure zero with respect to all computable dimension functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barmpalias G., Downey R., Ng K.M.: Jump inversions inside effectively closed sets and applications to randomness. J. Symb. Logic 76(2), 491–518 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bienvenu L., Miller J.S.: Randomness and lowness notions via open covers. Ann. Pure Appl. Logic 163, 506–518 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Binns S.: Small \({\Pi^{0}_{1}}\) classes. Arch. Math. Logic 45(4), 393–410 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Binns S.: Hyperimmunity in \({{2}^{\mathbb{N}}}\). Notre Dame J. Form. Log. 48(2), 293–316 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Binns S.: \({\Pi^{0}_{1}}\) classes with complex elements. J. Symb. Logic 73(4), 1341–1353 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Binns S., Kjos-Hanssen B.: Finding paths through narrow and wide trees. J. Symb. Logic 74(1), 349–360 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brattka, V.: Computability over topological structures. In: Cooper, S.B., Goncharov, S.S. (eds.) Computability and Models, pp. 93–136. Kluwer, New York (2003)

  8. Brattka, V., Hertling, P., Weihrauch, K.: A tutorial on computable analysis. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) New Computational Paradigms, pp. 425–491. Springer, Berlin (2008)

  9. Calude, C.S., Coles, R.J.: Program-size complexity of initial segments and domination relation reducibility. In: Karhumäki, J., Hauer, H., Păun, G., Rozenberg, G. (eds.) Jewels and Forever, pp. 225–237. Springer, Berlin (1999)

  10. Chaitin G.J.: Nonrecursive infinite strings with simple initial segments. IBM J. Res. Dev. 21, 350–359 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  11. Diamondstone, D., Kjos-Hanssen, B.: Members of random closed sets. In: Mathematical Theory and Computational Practice, pp. 144–153. Springer, Berlin (2009)

  12. Downey R., Griffiths E., LaForte G.: On Schnorr and computable randomness, martingales, and machines. MLQ Math. Log. Q. 50(6), 613–627 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Downey R., Hirschfeldt D.R.: Algorithmic Randomness and Complexity. Springer, Berlin (2010)

    MATH  Google Scholar 

  14. Downey R., Nies A., Weber R., Yu L.: Lowness and \({\Pi^{0}_{2}}\) nullsets. J. Symb. Logic 71(3), 1044–1052 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Downey R.G., Griffiths E.J.: Schnorr randomness. J. Symb. Logic 69(2), 533–554 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Downey, R.G., Hirschfeldt, D.R., Nies, A., Stephan, F.: Trivial reals. In: Downey, R.G., Ding, D., Tung, S.P., Qiu, Y.H., Yasugi, M. (eds.) Proceedings of the 7th and 8th Asian Logic Conferences, pp. 103–131. Singapore University Press and World Scientific, Singapore (2003)

  17. Downey, R.G., Merkle, W., Reimann, J.: Schnorr dimension. In: Barry Cooper, S. et al. (ed.) New Computational Paradigms, First Conference on Computability in Europe, CiE 2005, Lecture Notes in Comput. Sci., vol. 3526, pp. 96–105. Springer, Berlin (2005)

  18. Franklin J., Greenberg N., Stephan F., Wu G.: Anti-complex sets and reducibilities with tiny use. J. Symb. Logic 78(4), 1307–1327 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Franklin J., Stephan F.: Van Lambalgen’s theorem and high degrees. Notre Dame J. Form. Log. 52(2), 173–185 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Franklin J.N.Y.: Hyperimmune-free degrees and Schnorr triviality. J. Symb. Logic 73(3), 999–1008 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Franklin J.N.Y.: Schnorr trivial reals: a construction. Arch. Math. Log. 46(7–8), 665–678 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Franklin, J.N.Y.: Lowness and highness properties for randomness notions. In: Arai, T. et al. (ed.) Proceedings of the 10th Asian Logic Conference, pp. 124–151. World Scientific, Singapore (2010)

  23. Franklin J.N.Y.: Schnorr triviality and genericity. J. Symb. Logic 75(1), 191–207 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Franklin J.N.Y., Stephan F.: Schnorr trivial sets and truth-table reducibility. J. Symb. Logic 75(2), 501–521 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Greenberg N., Miller J.S.: Lowness for Kurtz randomness. J. Symb. Logic 74, 665–678 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Higuchi K., Kihara T.: On effectively closed sets of effective strong measure zero. Ann. Pure Appl. Logic 165(9), 1445–1469 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  27. Hirschfeldt D., Nies A., Stephan F.: Using random sets as oracles. J. Lond. Math. Soc. 75, 610–622 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hölzl, R., Merkle, W.: Traceable sets. Theoret. Comput. Sci. 323, 301–315 (2010)

  29. Kanovich M.I.: On the complexity of enumeration and decision of predicates. Sov. Math. Dokl. 11, 17–20 (1970)

    Google Scholar 

  30. Kihara T., Miyabe K.: Uniform Kurtz randomness. J. Log. Comput. 24(4), 863–882 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  31. Kjos-Hanssen B., Merkle W., Stephan F.: Kolmogorov complexity and the recursion theorem Trans. Am. Math. Soc. 363(10), 5465–5480 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kjos-Hanssen B., Miller J.S., Solomon D.R.: Lowness notions, measure, and domination. J. Lond. Math. Soc. 85(3), 869–888 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  33. Kjos-Hanssen B., Nies A.: Superhighness. Notre Dame J. Form. Log. 50, 445–452 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  34. Kjos-Hanssen B., Nies A., Stephan F.: Lowness for the class of Schnorr random reals. SIAM J. Comput. 35(3), 647–657 (2005)

    Article  MathSciNet  Google Scholar 

  35. Kučera A.: On relative randomness. Ann. Pure Appl. Logic 63, 61–67 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  36. Kučera A., Terwijn S.: Lowness for the class of random sets. J. Symb. Logic 64, 1396–1402 (1999)

    Article  MATH  Google Scholar 

  37. Merkle W., Miller J., Nies A., Reimann J., Stephan F.: Kolmogorov–Loveland randomness and stochasticity. Ann. Pure Appl. Logic 138(1–3), 183–210 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  38. Miyabe, K.: Schnorr triviality and its equivalent notions. Theory Comput. Syst. (to appear)

  39. Miyabe K.: Truth-table Schnorr randomness and truth-table reducible randomness. MLQ Math. Log. Q. 57(3), 323–338 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  40. Miyabe, K., Rute, J.: Van Lambalgen’s theorem for uniformly relative Schnorr and computable randomness. In: Proceedings of the Twelfth Asian Logic Conference, pp. 251–270 (2013)

  41. Nies A.: Lowness properties and randomness. Adv. Math. 197, 274–305 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  42. Nies A.: Computability and Randomness. Oxford University Press, USA (2009)

    Book  MATH  Google Scholar 

  43. Nies A., Stephan F., Terwijn S.: Randomness, relativization and Turing degrees. J. Symb. Logic 70, 515–535 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  44. Odifreddi, P.: Classical Recursion Theory, vol. 1. North-Holland, Amsterdam (1990)

  45. Odifreddi, P.: Classical Recursion Theory, vol. 2. North-Holland, Amsterdam (1999)

  46. Pawlikowski J.: A characterization of strong measure zero sets. Israel J. Math. 93(1), 171–183 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  47. Reimann, J.: Computability and Fractal Dimension. Ph.D. Thesis, Universität Heidelberg (2004)

  48. Soare R.I.: Recursively Enumerable Sets and Degrees. Perspectives in Mathematical Logic. Springer, Berlin (1987)

    Google Scholar 

  49. Solovay, R.: Draft of Paper (or Series of Papers) on Chaitin’s Work. Unpublished Notes (1975), p. 215

  50. Stephan F., Yu L.: Lowness for weakly 1-generic and Kurtz-random. Lect. Notes Comput. Sci. 3959, 756–764 (2006)

    Article  MathSciNet  Google Scholar 

  51. Terwijn S.A., Zambella D.: Computational randomness and lowness. J. Symb. Logic 66(3), 1199–1205 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  52. van Lambalgen, M.: Random Sequences. Ph.D. Thesis, University of Amsterdam (1987)

  53. Weihrauch K.: Computable Analysis: An Introduction. Springer, Berlin (2000)

    Google Scholar 

  54. Weihrauch K., Grubba T.: Elementary computable topology. J. UCS 15(6), 1381–1422 (2009)

    MATH  MathSciNet  Google Scholar 

  55. Yu L.: When van Lambalgen’s theorem fails. Proc. Am. Math. Soc. 135(3), 861–864 (2007)

    Article  MATH  Google Scholar 

  56. Zambella, D.: On Sequences with Simple Initial Segments. Tech. rep., Univ. Amsterdam (1990). ILLC Technical Report ML 1990-05

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenshi Miyabe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kihara, T., Miyabe, K. Unified characterizations of lowness properties via Kolmogorov complexity. Arch. Math. Logic 54, 329–358 (2015). https://doi.org/10.1007/s00153-014-0413-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-014-0413-8

Keywords

Mathematics Subject Classification

Navigation