Skip to main content
Log in

A linear system form solution to compute the local space average color

  • Short Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

In this document, we present an alternative to the method introduced by Ebner (Pattern Recognit 60–67, 2003; J Parallel Distrib Comput 64(1):79–88, 2004; Color constancy using local color shifts, pp 276–287, 2004; Color Constancy, 2007; Mach Vis Appl 20(5):283–301, 2009) for computing the local space average color. We show that when the problem is framed as a linear system and the resulting series is solved, there is a solution based on LU decomposition that reduces the computing time by at least an order of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Barnard, K., Cardei, V., Funt, B.: A comparison of computational color constancy algorithms. I: methodology and experiments with synthesized data. IEEE Trans. Image Process. 11(9), 972–984 (2002)

    Article  Google Scholar 

  2. Barnard, K., Finlayson, G., Funt, B.: Colour constancy for scenes with varying illumination. In: ECCV, pp. 1–15 (1996)

  3. Barnard, K., Martin, L., Coath, A., Funt, B.: A comparison of computational color constancy algorithms. II. Experiments with image data. IEEE Trans. Image Process. 11(9), 985–996 (2002)

    Article  Google Scholar 

  4. Bianco, S., Ciocca, G., Cusano, C., Schettini, R.: Automatic color constancy algorithm selection and combination. Pattern Recognit. 43(3), 695–705 (2010)

    Article  MATH  Google Scholar 

  5. Buchsbaum, G.: A spatial processor model for object colour perception. J. Frankl. Inst. 310(1), 1–26 (1980)

    Article  MathSciNet  Google Scholar 

  6. Ebner, M.: Combining white-patch Retinex and the gray world assumption to achieve color constancy for multiple illuminants. In: Pattern Recognition. Lecture Notes in Computer Science, vol 2781, pp 60–67 (2003)

  7. Ebner, M.: A parallel algorithm for color constancy. J. Parallel Distrib. Comput. 64(1), 79–88 (2004)

    Article  Google Scholar 

  8. Ebner, M.: Color constancy using local color shifts. In: ECCV, pp. 276–287 (2004)

  9. Ebner, M.: Color Constancy. Wiley, West Sussex (2007)

  10. Ebner, M.: Color constancy based on local space average color. Mach. Vis. Appl. 20(5), 283–301 (2009)

    Article  Google Scholar 

  11. Finlayson, G., Funt, B., Barnard, K.: Color constancy under varying illumination. In: ICCV, p. 720 (1995)

  12. Finlayson, G., Schiele, B., Crowley, J.: Comprehensive colour image normalization. In: ECCV, pp. 475–490 (1998)

  13. Gijsenij, A., Gevers, T., van de Weijer, J.: Computational color constancy: survey and experiments. IEEE Trans. Image Process. 20(9), 2475–2489 (2011)

    Google Scholar 

  14. Golub, G., van Loan, C.: Matrix Computations. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  15. Livingstone, M.: Vision and Art: the Biology of Seeing. Abrams, New York (2008)

    Google Scholar 

  16. McCann, J.: HDR imaging and color constancy: two sides of the same coin? In: SPIE, vol. 7866, p. 22 (2011)

  17. Palma-Amestoy, R., Provenzi, E., Bertalmío, M., Caselles, V.: A perceptually inspired variational framework for color enhancement. IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 458–474 (2009)

    Article  Google Scholar 

  18. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes, vol. 3. Cambridge University Press, New York (2007)

  19. Provenzi, E., Gatta, C., Fierro, M., Rizzi, A.: A spatially variant white-patch and gray-world method for color image enhancement driven by local contrast. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1757–1770 (2007)

    Article  Google Scholar 

  20. Wandell, B.: Foundations of Vision. Sinauer Associates, Sunderland (1995)

    Google Scholar 

  21. West, D.: Introduction to Graph Theory, vol. 1. Prentice Hall (2001)

  22. Young Jr., D.: Iterative Methods for Solving Partial Difference Equations of Elliptic Type. Tech. rep. Harvard University (1950)

Download references

Acknowledgments

Thanks to Marc Ebner for providing the original images for Fig. 2, to Mary Masterman for editing the document, and to the reviewers whose comments improved greatly the quality of our exposition. This work was partially supported by the Fomix CONACYT-DF under Grant No. 189005 and the Instituto Politecnico Nacional under Grant No. 20131832 for Joaquin Salas, and the National Science Foundation under Grant No. IIS-1017017 and by the Army Research Office under Grant No. W911NF-10-1-0387 for Carlo Tomasi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquin Salas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salas, J., Tomasi, C. A linear system form solution to compute the local space average color. Machine Vision and Applications 24, 1555–1560 (2013). https://doi.org/10.1007/s00138-013-0494-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-013-0494-0

Keywords

Navigation