Skip to main content
Log in

Machine vision scheme for stain-release evaluation using Gabor filters with optimized coefficients

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

This paper presents an efficient and practical approach for automatic, unsupervised object detection and segmentation in two-texture images based on the concept of Gabor filter optimization. The entire process occurs within a hierarchical framework and consists of the steps of detection, coarse segmentation, and fine segmentation. In the object detection step, the image is first processed using a Gabor filter bank. Then, the histograms of the filtered responses are analyzed using the scale-space approach to predict the presence/absence of an object in the target image. If the presence of an object is reported, the proposed approach proceeds to the coarse segmentation stage, wherein the best Gabor filter (among the bank of filters) is automatically chosen, and used to segment the image into two distinct regions. Finally, in the fine segmentation step, the coefficients of the best Gabor filter (output from the previous stage) are iteratively refined in order to further fine-tune and improve the segmentation map produced by the coarse segmentation step. In the validation study, the proposed approach is applied as part of a machine vision scheme with the goal of quantifying the stain-release property of fabrics. To that end, the presented hierarchical scheme is used to detect and segment stains on a sizeable set of digitized fabric images, and the performance evaluation of the detection, coarse segmentation, and fine segmentation steps is conducted using appropriate metrics. The promising nature of these results bears testimony to the efficacy of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Escofet J., Navarro R., Millan M., Pladellorens J.: Detection of local defects in textile webs using Gabor filters. Opt. Eng. 37(8), 2297–2307 (1998)

    Article  Google Scholar 

  2. Serdaroglu A., Ertuzun A., Ercil A.: Defect detection in textile fabric images using wavelet transforms and independent component analysis. Pattern Recognit. Image Anal. 16(1), 61–64 (2006)

    Article  Google Scholar 

  3. Jain R., Rao A., Kayaalp A., Cole C.: Machine vision for semiconductor wafer inspection. In: Freeman, H. (eds) Machine Vision for Inspection and Measurement, pp. 283–314. Academic Press, New York (1989)

    Google Scholar 

  4. Kimmel R., Malladi R., Sochen N.: Images as embedded maps and minimal surfaces: movies, color, texture, and volumetric medical images. Int. J. Comput. Vis. 39(2), 1405–1573 (2000)

    Article  Google Scholar 

  5. Wei D., Chan H.P., Helvie M.A., Sahiner B., Petrick N., Adler D.D., Goodsitt M.M.: Classification of mass and normal breast tissue on digital mammograms: multiresolution texture analysis. Med. Phys. 22(9), 1501–1513 (1995)

    Article  Google Scholar 

  6. Tuceryan, M., Jain, A.K.: Texture Analysis. The Handbook of Pattern Recognition and Computer Vision, pp. 207–248. World Scientific Publishing Co., NJ (1998)

  7. Daugman J.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J. Opt. Soc. Am. A 2(7), 1160–1169 (1985)

    Article  Google Scholar 

  8. Dunn D., Higgins W.E.: Texture segmentation using 2-D Gabor elementary functions. IEEE Trans. Pattern Anal. Mach. Intell. 16(2), 130–149 (1994)

    Article  Google Scholar 

  9. Dunn D.: Optimal Gabor filters for texture segmentation. IEEE Trans. Image Process. 4(7), 947–964 (1995)

    Article  Google Scholar 

  10. Weldon, T.P., Higgins, W.E., Dunn, D.: Efficient Gabor filter design using Rician output statistics. In: IEEE International Symposium on Circuits and Systems, vol. 3, London, England, 30 May–2 June 1994

  11. Bovik A.C.: Analysis of multichannel narrow-band filters for image texture segmentation. IEEE Trans. Signal Process. 39(9), 2025–2043 (1991)

    Article  Google Scholar 

  12. Ahmadian, A., Mostafa, A.: An efficient texture classification algorithm using Gabor wavelet. In: Proceedings of IEEE EMBS Cancun, Mexico, September 17–21, 2003

  13. Kumar A., Pang G.K.H.: Defect detection in textured materials using Gabor filters. IEEE Trans. Ind. Appl. 38(2), 425–440 (2002)

    Article  Google Scholar 

  14. Cohen H.A., You J.: A multi-scale texture classifier based on multiresolution ‘tuned’ mask. Pattern Recognit. Lett. 13, 599–604 (1992)

    Article  Google Scholar 

  15. You J., Cohen H.A.: Classification and segmentation of rotated and scaled textured images using texture ‘tuned’ mask. Pattern Recogni. Lett. 26, 245–258 (1993)

    Article  Google Scholar 

  16. Randen, T., Husoy, J.H.: Texture segmentation using filters with optimized energy separation. IEEE Trans. Image Process. 8(4) (1999)

  17. Duda R.O., Hart P.E., Stork D.G.: Pattern Classification. Wiley Interscience, New York (2001)

    MATH  Google Scholar 

  18. Carlotto M.J.: Histogram analysis using a scale-space approach. IEEE Trans. Pattern Anal. Mach. Intell. 9(1), 121–129 (1987)

    Article  Google Scholar 

  19. Shi J., Malik J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  20. Xiao J., Shah M.: Motion layer extraction in the presence of occlusion using graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1644–1659 (2005)

    Article  Google Scholar 

  21. Zhang W., Cao X., Qu Y., Hou Y., Zhao H., Zhang C.: Detecting and extracting the photo composites using planar homography and graph cut. IEEE Trans. Inform. Forensic Secur. 99, 544–555 (2010)

    Article  Google Scholar 

  22. AATCC: Test Method 130-1995. AATCC Technical Manual, pp. 217–219 (1995)

  23. Xu B., Reed J.A.: Instrumental evaluation of stain release in fabrics. J. Text. Inst. 87(1), 203–211 (1996)

    Article  Google Scholar 

  24. Gururajan, A., Sari-Sarraf, H., Hequet, E.: A statistical approach to defect detection and multi-scale localization in two-texture images. Opt. Eng. 47, 027202-1–027202-10 (2008)

    Google Scholar 

  25. Gururajan A., Hequet E., Sari-Sarraf H.: Objective evaluation of soil release in fabrics. Text. Res. J. 78(9), 782–795 (2008)

    Article  Google Scholar 

  26. Papoulis A.: Probability, Random Variables and Stochastic Processes, 3rd edn. McGraw-Hill, New York (1991)

    Google Scholar 

  27. Whalen A.D.: Detection of Signals in Noise. Academic Press, New York (1971)

    Google Scholar 

  28. Unser M.: Local linear transforms for texture measurements. Signal Process. 11(1), 61–79 (1986)

    Article  MathSciNet  Google Scholar 

  29. Mathews J.H., Fink K.K.: Numerical Methods Using Matlab, 4th edn. Prentice Hall, NJ (2004)

    Google Scholar 

  30. Randen T., Husoy J.H.: Filtering for texture classification: a comparative study. IEEE Trans. Pattern Recognit. Mach. Intell. 21(4), 291–310 (1999)

    Article  Google Scholar 

  31. Cohen H.A., You J.: A multi-scale texture classfier based on multiresolution tuned mask. Pattern Recognit. Lett. 13, 599–604 (1992)

    Article  Google Scholar 

  32. You J., Cohen H. A.: Classification and segmentation of rotated and scaled textured images using texture ‘tuned’ mask. Pattern Recognit. Lett. 26, 245–258 (1993)

    Google Scholar 

  33. Huo Z. M., Giger M. L.: Evaluation of an automatic segmentation method based on performances of an automatic classification method. Proc. SPIE 3981, 16–21 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arunkumar Gururajan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, C., Gururajan, A., Sari-Sarraf, H. et al. Machine vision scheme for stain-release evaluation using Gabor filters with optimized coefficients. Machine Vision and Applications 23, 349–361 (2012). https://doi.org/10.1007/s00138-010-0295-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-010-0295-7

Keywords

Navigation