Skip to main content
Log in

Influence of an acute increase in systemic vascular resistance on transpulmonary thermodilution-derived parameters in critically ill patients

  • Brief Report
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

The transpulmonary thermodilution technique enables measurement of cardiac index (CI), intrathoracic blood volume (ITBV), global end-diastolic volume (GEDV), and extravascular lung water (EVLW). In this study, we analyzed the robustness of this technique during an acute increase in systemic vascular resistance (SVR).

Design

Prospective, clinical study.

Setting

Surgical intensive care unit in a university hospital.

Patients and methods

Twenty-four mechanically ventilated septic shock patients, who for clinical indications underwent extended hemodynamic monitoring by transpulmonary thermodilution and continuously received norepinephrine.

Interventions and main results

After baseline measurements, mean arterial pressure was increased briefly by increasing norepinephrine dosage and hemodynamic measurements were repeated before a control measurement was obtained. At each time point, 15 cc of 0.9% saline (< 8 °C) was administered by central venous injection in triplicate. Fluid status and respirator adjustments were kept constant. ANOVA with an all-pairwise comparison method was used for statistical analysis. Heart rate, central venous pressure, and EVLW remained constant throughout, while SVR significantly changed from 551 ± 106 to 746 ± 91 dyn*s*cm−5 and again to 566 ± 138 dyn*s*cm−5 (p < 0.05). However, CI and central blood volumes showed a reversible significant increase, i.e., ITBV went from 816 ± 203 to 867 ± 195 ml/m2 and then to 821 ± 205 ml/m2 and GEDV from 703 ± 178 to 747 ± 175 ml/m2 and finally to 704 ± 170 ml/m2, respectively. In eight patients, 2-D echocardiography was applied and revealed a reversible increase in left-ventricular end-diastolic area.

Conclusion

An acute increase in SVR by increasing norepinephrine dosage results in a reversible increase in central blood volumes (ITBV, GEDV) as measured by transpulmonary thermodilution and supported by echocardiography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Neumann P (1999) Extravascular lung water and intrathoracic blood volume: double versus single indicator dilution technique. Intensive Care Med 25:216–219

    Article  PubMed  CAS  Google Scholar 

  2. Sakka SG, Ruhl CC, Pfeiffer UJ, Beale R, McLuckie A, Reinhart K, Meier-Hellmann A (2000) of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med 26:180–187

    Article  PubMed  CAS  Google Scholar 

  3. Lichtwarck-Aschoff M, Zeravik J, Pfeiffer UJ (1992) Intrathoracic blood volume accurately reflects circulatory volume status in critically ill patients with mechanical ventilation. Intensive Care Med 18:142–147

    Article  PubMed  CAS  Google Scholar 

  4. Sakka SG, Bredle DL, Reinhart K, Meier-Hellmann A (1999) Comparison between intrathoracic blood volume and cardiac filling pressures in the early phase of hemodynamic instability of patients with sepsis or septic shock. J Crit Care 14:78–83

    Article  PubMed  CAS  Google Scholar 

  5. Godje O, Peyerl M, Seebauer T, Lamm P, Mair H, Reichart B (1998) Central venous pressure, pulmonary capillary wedge pressure and intrathoracic blood volumes as preload indicators in cardiac surgery patients. Eur J Cardiothorac Surg 13:533–539

    Article  PubMed  CAS  Google Scholar 

  6. Hoeft A, Schorn B, Weyland A, Scholz M, Buhre W, Stepanek E, Allen SJ, Sonntag H (1994) Bedside assessment of intravascular volume status in patients undergoing coronary bypass surgery. Anesthesiology 81:76–86

    Article  PubMed  CAS  Google Scholar 

  7. Mitchell JP, Schuller D, Calandrino FS, Schuster DP (1992) Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization. Am Rev Respir Dis 145:990–998

    PubMed  CAS  Google Scholar 

  8. Eisenberg PR, Hansbrough JR, Anderson D, Schuster DP (1987) A prospective study of lung water measurement during patient management in an intensive care unit. Am Rev Respir Dis 136:662–668

    PubMed  CAS  Google Scholar 

  9. Hinder F, Poelaert JI, Schmidt C, Hoeft A, Mollhoff T, Loick HM, Van Aken H (1998) Assessment of cardiovascular volume status by transoesophageal echocardiography and dye dilution during cardiac surgery. Eur J Anaesthesiol 15:633–640

    Article  PubMed  CAS  Google Scholar 

  10. Hofer CK, Furrer L, Matter-Ensner S, Maloigne M, Klaghofer R, Genoni M, Zollinger A (2005) Volumetric preload measurement by thermodilution: a comparison with transoesophageal echocardiography. Br J Anaesth 94:748–755

    Article  PubMed  CAS  Google Scholar 

  11. Buhre W, Kazmaier S, Sonntag H, Weyland A (2001) Changes in cardiac output and intrathoracic blood volume: a mathematical coupling of data? Acta Anaesthesiol Scand 45:863–867

    Article  PubMed  CAS  Google Scholar 

  12. McLuckie A, Bihari D (2000) Investigating the relationship between intrathoracic blood volume index and cardiac index. Intensive Care Med 26:1376–1378

    Article  PubMed  CAS  Google Scholar 

  13. Lichtwarck-Aschoff M, Beale R, Pfeiffer UJ (1996) Central venous pressure, pulmonary artery occlusion pressure, intrathoracic blood volume, and right ventricular end-diastolic volume as indicators of cardiac preload. J Crit Care 11:180–188

    Article  PubMed  CAS  Google Scholar 

  14. Buhre W, Weyland A, Schorn B, Scholz M, Kazmaier S, Hoeft A, Sonntag H (1999) Changes in central venous pressure and pulmonary capillary wedge pressure do not indicate changes in right and left heart volume in patients undergoing coronary artery bypass surgery. Eur J Anaesthesiol 16:11–17

    Article  PubMed  CAS  Google Scholar 

  15. Sakka SG, Bredle DL, Reinhart K, Meier-Hellmann A (1999) Comparison between intrathoracic blood volume and cardiac filling pressures in the early phase of hemodynamic instability of patients with sepsis or septic shock. J Crit Care 14:78–83

    Article  PubMed  CAS  Google Scholar 

  16. Lichtwarck-Aschoff M, Zeravik J, Pfeiffer UJ (1992) Intrathoracic blood volume accurately reflects circulatory volume status in critically ill patients with mechanical ventilation. Intensive Care Med 18:142–147

    Article  PubMed  CAS  Google Scholar 

  17. Combes A, Berneau JB, Luyt CE, Trouillet JL (2004) Estimation of left ventricular systolic function by single transpulmonary thermodilution. Intensive Care Med 30:1377–1383

    PubMed  Google Scholar 

  18. Weissman C, Ornstein EJ, Young WL (1993) Arterial pulse contour analysis trending of cardiac output: hemodynamic manipulations during cerebral arteriovenous malformation resection. J Clin Monit 9:347–353

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir G. Sakka.

Additional information

This work was presented in part at the 19th annual meeting of the European Society of Intensive Care Medicine, 24–27 September 2006, Barcelona.

Samir Sakka has received fees from Pulsion Medical Systems AG, Munich, Germany, for giving lectures.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozieras, J., Thuemer, O. & Sakka, S.G. Influence of an acute increase in systemic vascular resistance on transpulmonary thermodilution-derived parameters in critically ill patients. Intensive Care Med 33, 1619–1623 (2007). https://doi.org/10.1007/s00134-007-0669-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-007-0669-0

Keywords

Navigation