Skip to main content
Log in

Genetische Faktoren bei Muskelverletzungen im Sport

Genetics in sports—muscle injuries

  • Leitthema
  • Published:
Die Orthopädie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Das menschliche Genom ist der vollständige Satz genetischer Anweisungen, die in der DNA eines Individuums codiert sind. Die Genetik kann eine wichtige Rolle bei der Entstehung und dem Verlauf von Muskelverletzungen spielen. Viele Gene sind an der Entwicklung, dem Wachstum und der Reparatur von Muskeln beteiligt, und Variationen in diesen Genen können die Anfälligkeit eines Sportlers für Muskelverletzungen beeinflussen.

Spezifische Gene

Mehrere Gene wurden mit Muskelverletzungen in Verbindung gebracht, z. B. Myostatin (MSTN), der insulinähnliche Wachstumsfaktor 1 (IGF-1) und verschiedene Kollagene (COL). Neben den Genen, die an der Entwicklung, dem Wachstum und der Reparatur von Muskeln beteiligt sind, können auch Gene, die an Entzündungsprozessen und der Schmerzsignalgebung beteiligt sind, wie der Tumornekrosefaktor alpha (TNF-α), der Mu-Opioidrezeptor (OPRM1) und Interleukin-Gene (IL), eine Rolle bei der Entstehung und dem Fortschreiten von Muskelverletzungen spielen.

Gentests

Genetische Tests können bei der Prävention von Muskelverletzungen bei Sportlern hilfreich sein. Die Untersuchung auf Variationen in Genen, die mit Muskelentwicklung, -reparatur und -wachstum sowie mit der Kollagenbildung in Verbindung stehen, kann wertvolle Informationen über die Anfälligkeit eines Sportlers für Muskelverletzungen liefern. Es ist wichtig zu beachten, dass Gentests zwar wertvolle Informationen für die Verletzungsprävention liefern können, aber nur ein Teil des Puzzles sind. Andere Faktoren, wie die Trainingsbelastung einer Person, der allgemeine Gesundheitszustand und die Lebensgewohnheiten, spielen ebenfalls eine Rolle für das Verletzungsrisiko. Daher sollten alle Strategien zur Verletzungsprävention individuell angepasst werden und auf einer umfassenden Bewertung aller relevanten Faktoren beruhen.

Abstract

Background

The human genome is the complete set of genetic instructions encoded in an individual’s DNA. Genetics plays an important role in the development and progression of muscle injuries. Many genes are involved in muscle development, growth, and repair, and variations in these genes can affect an athlete’s susceptibility to muscle injury.

Specific genes

Several genes have been linked to muscle injury, such as myostatin (MSTN), insulin-like growth factor 1 (IGF-1), and several collagen genes (COL). In addition to genes involved in muscle development, growth, and repair, genes involved in inflammation and pain signaling, such as tumor necrosis factor alpha (TNF-α), mu opioid receptor (OPRM1), and interleukin (IL) genes, may also play a role in the development and progression of muscle injury.

Genetic tests

Genetic testing can be a helpful tool in the prevention of muscle injuries in athletes. Testing for variations in genes associated with muscle development, repair, and growth, as well as collagen formation, can provide valuable information about an athlete’s susceptibility to muscle injury. It is important to note that while genetic testing can provide valuable information for injury prevention, it is only one piece of the puzzle. Other factors such as an individual’s training history, general health, and lifestyle habits also play a role in injury risk. Therefore, all injury prevention strategies should be individualized and based on a comprehensive assessment of all relevant factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

ACE:

Angiotensin-Konvertierendes Enzym

ACTN3 :

Alpha-Actinin‑3

COL :

Kollagen

GWAS :

Genomweite Assoziationsstudien

HGF :

Hepatozytenwachstumsfaktor

HSPG2 :

Heparansulfatproteoglykan 2

IGF‑1 :

Insulinähnlicher Wachstumsfaktor 1

IL :

Interleukine

MSTN :

Myostatin

OPRM1 :

Mu-Opioidrezeptor

SNP :

Einzelnukleotid-Polymorphismen

TGF‑β :

Transformierender Wachstumsfaktor beta

TNF‑α :

Tumornekrosefaktor alpha

VDR :

Vitamin-D-Rezeptor

Literatur

  1. Ahmad CS, Dick RW, Snell E et al (2014) Major and minor league baseball hamstring injuries: epidemiologic findings from the major league baseball injury surveillance system. Am J Sports Med 42:1464–1470. https://doi.org/10.1177/0363546514529083

    Article  PubMed  Google Scholar 

  2. Ahmad SS, Ahmad K, Lee EJ et al (2020) Implications of insulin-like growth factor‑1 in skeletal muscle and various diseases. Cells 9:1773. https://doi.org/10.3390/cells9081773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bengtsson H, Ekstrand J, Hägglund M (2013) Muscle injury rates in professional football increase with fixture congestion: an 11-year follow-up of the UEFA Champions League injury study. Br J Sports Med 47:743–747. https://doi.org/10.1136/bjsports-2013-092383

    Article  PubMed  Google Scholar 

  4. Ben-Zaken S, Meckel Y, Nemet D, Eliakim A (2017) The combined frequency of IGF and myostatin polymorphism among track & field athletes and swimmers. Growth Horm IGF Res 32:29–32. https://doi.org/10.1016/j.ghir.2016.12.002

    Article  CAS  PubMed  Google Scholar 

  5. Borsa PA, Parr JJ, Wallace MR et al (2018) Genetic and psychological factors interact to predict physical impairment phenotypes following exercise-induced shoulder injury. J Pain Res 11:2497–2508. https://doi.org/10.2147/JPR.S171498

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bouvière J, Trignol A, Hoang D‑H et al (2019) Heparan sulfate mimetics accelerate postinjury skeletal muscle regeneration. Tissue Eng Part A 25:1667–1676. https://doi.org/10.1089/ten.tea.2019.0058

    Article  CAS  PubMed  Google Scholar 

  7. Bron C, Dommerholt JD (2012) Etiology of myofascial trigger points. Curr Pain Headache Rep 16:439–444. https://doi.org/10.1007/s11916-012-0289-4

    Article  PubMed  PubMed Central  Google Scholar 

  8. Charbonneau DE, Hanson ED, Ludlow AT et al (2008) ACE genotype and the muscle hypertrophic and strength responses to strength training. Med Sci Sports Exerc 40:677–683. https://doi.org/10.1249/MSS.0b013e318161eab9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Close GL, Leckey J, Patterson M et al (2013) The effects of vitamin D 3 supplementation on serum total 25[OH]D concentration and physical performance: a randomised dose−response study. Br J Sports Med 47:692–696. https://doi.org/10.1136/bjsports-2012-091735

    Article  PubMed  Google Scholar 

  10. Collins M, Mokone GG, September AV et al (2009) The COL5A1 genotype is associated with range of motion measurements. Scand J Med Sci Sports 19:803–810. https://doi.org/10.1111/j.1600-0838.2009.00915.x

    Article  CAS  PubMed  Google Scholar 

  11. Ekstrand J, Askling C, Magnusson H, Mithoefer K (2013) Return to play after thigh muscle injury in elite football players: implementation and validation of the Munich muscle injury classification. Br J Sports Med 47:769–774. https://doi.org/10.1136/bjsports-2012-092092

    Article  PubMed  Google Scholar 

  12. Ekstrand J, Hägglund M, Waldén M (2011) Epidemiology of muscle injuries in professional football (soccer). Am J Sports Med 39:1226–1232. https://doi.org/10.1177/0363546510395879

    Article  PubMed  Google Scholar 

  13. Elijah IE, Branski LK, Finnerty CC, Herndon DN (2011) The GH/IGF‑1 system in critical illness. Best Pract Res Clin Endocrinol Metab 25:759–767. https://doi.org/10.1016/j.beem.2011.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Eynon N, Duarte JA, Oliveira J et al (2009) ACTN3 R577X polymorphism and Israeli top-level athletes. Int J Sports Med 30:695–698. https://doi.org/10.1055/s-0029-1220731

    Article  CAS  PubMed  Google Scholar 

  15. Eynon N, Ruiz JR, Femia P et al (2012) The ACTN3 R577X polymorphism across three groups of elite male European athletes. PLoS One 7:e43132. https://doi.org/10.1371/journal.pone.0043132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guan Y, Wang S, Wang J et al (2020) Gene polymorphisms and expression levels of interleukin‑6 and interleukin-10 in lumbar disc disease: a meta-analysis and immunohistochemical study. J Orthop Surg 15:54. https://doi.org/10.1186/s13018-020-01588-8

    Article  Google Scholar 

  17. Hägglund M, Waldén M, Magnusson H et al (2013) Injuries affect team performance negatively in professional football: an 11-year follow-up of the UEFA Champions League injury study. Br J Sports Med 47:738–742. https://doi.org/10.1136/bjsports-2013-092215

    Article  PubMed  Google Scholar 

  18. Haser C, Stöggl T, Kriner M et al (2017) Effect of dry needling on thigh muscle strength and hip flexion in elite soccer players. Med Sci Sports Exerc 49:378–383. https://doi.org/10.1249/MSS.0000000000001111

    Article  PubMed  Google Scholar 

  19. Kostek MC, Devaney JM, Gordish-Dressman H et al (2010) A polymorphism near IGF1 is associated with body composition and muscle function in women from the health, aging, and body composition study. Eur J Appl Physiol 110:315–324. https://doi.org/10.1007/s00421-010-1500-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kumagai H, Miyamoto-Mikami E, Hirata K et al (2019) ESR1 rs2234693 polymorphism is associated with muscle injury and muscle stiffness. Med Sci Sports Exerc 51:19–26. https://doi.org/10.1249/MSS.0000000000001750

    Article  CAS  PubMed  Google Scholar 

  21. Lim T, Santiago C, Pareja-Galeano H et al (2021) Genetic variations associated with non-contact muscle injuries in sport: a systematic review. Scand J Med Sci Sports 31:2014–2032. https://doi.org/10.1111/sms.14020

    Article  PubMed  Google Scholar 

  22. Lopes LR, de Miranda VAR, Guimarães JAM et al (2021) Association of TNF-α-308G 〉 A polymorphism with susceptibility to tendinopathy in athletes: a case−control study. BMC Sports Sci Med Rehabil 13:51. https://doi.org/10.1186/s13102-021-00276-2

    Article  PubMed  PubMed Central  Google Scholar 

  23. Maffulli N, Margiotti K, Longo UG et al (2013) The genetics of sports injuries and athletic performance. Muscles Ligaments Tendons J 3:173–189

    PubMed  PubMed Central  Google Scholar 

  24. Massidda M, Corrias L, Bachis V et al (2015) Vitamin D receptor gene polymorphisms and musculoskeletal injuries in professional football players. Exp Ther Med 9:1974–1978. https://doi.org/10.3892/etm.2015.2364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Moran CN, Yang N, Bailey MES et al (2007) Association analysis of the ACTN3 R577X polymorphism and complex quantitative body composition and performance phenotypes in adolescent Greeks. Eur J Hum Genet 15:88–93. https://doi.org/10.1038/sj.ejhg.5201724

    Article  CAS  PubMed  Google Scholar 

  26. Mosher DS, Quignon P, Bustamante CD et al (2007) A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet 3:e79. https://doi.org/10.1371/journal.pgen.0030079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nilstad A, Andersen TE, Bahr R et al (2014) Risk factors for lower extremity injuries in elite female soccer players. Am J Sports Med 42:940–948. https://doi.org/10.1177/0363546513518741

    Article  PubMed  Google Scholar 

  28. O’Brien J, Finch CF (2014) The implementation of musculoskeletal injury-prevention exercise programmes in team ball sports: a systematic review employing the RE-AIM framework. Sports Med 44:1305–1318. https://doi.org/10.1007/s40279-014-0208-4

    Article  PubMed  Google Scholar 

  29. O’Brien J, Finch CF (2016) Injury prevention exercise programmes in professional youth soccer: understanding the perceptions of programme deliverers. BMJ Open Sport Exerc Med 2:e75. https://doi.org/10.1136/bmjsem-2015-000075

    Article  PubMed  PubMed Central  Google Scholar 

  30. Onori ME, Pasqualetti M, Moretti G et al (2022) Genetics and sport injuries: new perspectives for athletic excellence in an Italian court of rugby union players. Genes 13:995. https://doi.org/10.3390/genes13060995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Opar DA, Williams MD, Shield AJ (2012) Hamstring strain injuries: factors that lead to injury and re-injury. Sports Med 42:209–226. https://doi.org/10.2165/11594800-000000000-00000

    Article  PubMed  Google Scholar 

  32. Pasqualetti M, Onori ME, Canu G et al (2022) The relationship between ACE, ACTN3 and MCT1 genetic polymorphisms and athletic performance in elite rugby union players: a preliminary study. Genes 13:969. https://doi.org/10.3390/genes13060969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pereira LC, Chiarello MD, Garcia KR et al (2019) The effect of muscle damage and the IL-6-174C/G polymorphism on the serum IL‑6 levels of older men. Rev Bras Med Esporte 25:480–484. https://doi.org/10.1590/1517-869220192506189393

    Article  Google Scholar 

  34. Posthumus M, Collins M, van der Merwe L et al (2012) Matrix metalloproteinase genes on chromosome 11q22 and the risk of anterior cruciate ligament (ACL) rupture: MMP genes and ACL rupture risk. Scand J Med Sci Sports 22:523–533. https://doi.org/10.1111/j.1600-0838.2010.01270.x

    Article  CAS  PubMed  Google Scholar 

  35. Renström L, Stål P, Song Y, Forsgren S (2017) Bilateral muscle fiber and nerve influences by TNF-alpha in response to unilateral muscle overuse−studies on TNF receptor expressions. BMC Musculoskelet Disord 18:498. https://doi.org/10.1186/s12891-017-1796-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Robson-Ansley PJ, Blannin A, Gleeson M (2007) Elevated plasma interleukin‑6 levels in trained male triathletes following an acute period of intense interval training. Eur J Appl Physiol 99:353–360. https://doi.org/10.1007/s00421-006-0354-y

    Article  CAS  PubMed  Google Scholar 

  37. September A, Posthumus M, van der Merwe L et al (2008) The COL12A1 and COL14A1 genes and Achilles tendon injuries. Int J Sports Med 29:257–263. https://doi.org/10.1055/s-2007-965127

    Article  CAS  PubMed  Google Scholar 

  38. September AV, Nell E‑M, Connell KO et al (2011) Investigations of genes encoding proteins within the inflammatory pathway provides insight into the genetic susceptibility of achilles tendinopathy. Br J Sports Med 45:340–340. https://doi.org/10.1136/bjsm.2011.084038.86

    Article  Google Scholar 

  39. Sgrò P, Ceci R, Lista M et al (2021) Quercetin modulates IGF‑I and IGF-II levels after eccentric exercise-induced muscle-damage: a placebo-controlled study. Front Endocrinol 12:745959. https://doi.org/10.3389/fendo.2021.745959

    Article  Google Scholar 

  40. Solanki AK, Srivastava P, Arif E et al (2020) HGF-induced activation of NEPHRIN and NEPH1 serves as a novel mechanism for recovery of podocytes from injury https://doi.org/10.1101/2020.05.04.077941

    Book  Google Scholar 

  41. Song Y‑H, Song JL, Delafontaine P, Godard MP (2013) The therapeutic potential of IGF‑I in skeletal muscle repair. Trends Endocrinol Metab 24:310–319. https://doi.org/10.1016/j.tem.2013.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D (2019) Benefits and limitations of genome-wide association studies. Nat Rev Genet 20(8):467-484. https://doi.org/10.1038/s41576-019-0127-1

    Article  CAS  PubMed  Google Scholar 

  43. Tsianos G, Sanders J, Dhamrait S et al (2004) The ACE gene insertion/deletion polymorphism and elite endurance swimming. Eur J Appl Physiol. https://doi.org/10.1007/s00421-004-1120-7

    Article  PubMed  Google Scholar 

  44. Verrall GM, Slavotinek JP, Barnes PG et al (2001) Clinical risk factors for hamstring muscle strain injury: a prospective study with correlation of injury by magnetic resonance imaging. Br J Sports Med 35:435–439. https://doi.org/10.1136/bjsm.35.6.435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yoshida T, Delafontaine P (2020) Mechanisms of IGF-1-mediated regulation of skeletal muscle hypertrophy and atrophy. Cells 9:1970. https://doi.org/10.3390/cells9091970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang X, Ran J, Lian T et al (2019) The single nucleotide polymorphisms of myostatin gene and their associations with growth and carcass traits in daheng broiler. Braz J Poult Sci. https://doi.org/10.1590/1806-9061-2018-0808

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Pfab MBA HCM.

Ethics declarations

Interessenkonflikt

F. Pfab ist CMO (Chief Medical Officer) der DNathlete AG. J. Sieland, C. Haser, W. Banzer und T. Kocher geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pfab, F., Sieland, J., Haser, C. et al. Genetische Faktoren bei Muskelverletzungen im Sport. Orthopädie 52, 889–896 (2023). https://doi.org/10.1007/s00132-023-04439-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-023-04439-6

Schlüsselwörter

Keywords

Navigation