Skip to main content
Log in

Externe Fixateure zur Korrektur komplexer Deformitäten

Vom klassischen Ilizarov-Apparat zum modernen Software-unterstützten Hexapoden

External fixation for the correction of complex deformities

From the classic Ilizarov ring fixator to modern software-driven hexapod fixators

  • Leitthema
  • Published:
Die Orthopädie Aims and scope Submit manuscript

Zusammenfassung

Die Geschichte und die Entwicklung des Ringfixateurs ist eng mit der Geschichte der Beinverlängerung verbunden. Gavriil A. Ilizarov verdanken wir nicht nur seinen Ringfixateur, sondern auch die ersten wissenschaftlichen Untersuchungen zur Distraktionsosteogenese. Die Entwicklung und Verbreitung der Methode erfolgten zuerst durch einzelne Pioniere, eine standardisierte Nomenklatur und jährliche Kurse führten schließlich zu einer größeren Verbreitung. Ein Game-Changer war die Einführung des Taylor Spatial Frames (TSF) 1997. Obwohl schon zuvor unterschiedliche Gruppen Hexapoden-Fixateure entwickelt hatten, gelang es schließlich dem TSF eine entsprechende Marktreife und Marktpräsenz zu entwickeln. Nachdem das Patent für den TSF auslief, wurden von vielen Firmen Hexapoden-Fixateure mit unterschiedlichen Neuerungen entwickelt. Eine neue Version des TSF, der SMART TSF mit einer intuitiven Software-Planung wurde 2021 erstmals in Baltimore vorgestellt. Während die Einführung der Verlängerungsmarknägel zu Beginn der 2000er-Jahre und die weite Verbreitung ab etwa 2013 den Fixateur für einige Indikationen in den Hintergrund gestellt hat, ist dieser nach wie vor die Methode der Wahl für komplexere Rekonstruktionen, besonders bei Fehlstellungen in der Traumatologie sowie in der Kinderorthopädie bei offenen Wachstumsfugen.

Abstract

The history and development of circular fixation is closely aligned with the history of limb lengthening. Gavriil A. Ilizarov not only developed his circular fixator, but he also was the first to research and publish on distraction osteogenesis. Progress and dissemination of the method was initially based on individual pioneers; a standardized nomenclature and annual courses led to a wider dissemination. The introduction of the Taylor spatial frame in 1997 was a game changer. Although various groups had already developed Hexapod-fixators, it was the TSF that hit the market and achieved market presence. After the patent for TSF expired, many companies developed hexapod fixators with various modifications. A new version of the TSF, the Smart TSF, which included an intuitive planning software, was introduced in Baltimore in 2021. The introduction of intramedullary lengthening nails at the beginning of the 2000s and the wide dissemination starting approximately 2013 rendered external fixation obsolete for certain indications. However, ring fixators are still the method of choice for complex reconstruction of deformity in traumatology, as well as in pediatric orthopedics in the presence of open growth plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10

Abbreviations

ACA:

„angular correction axis“

AO :

Arbeitsgemeinschaft für Osteosynthesefragen

ASAMI :

Associazione per lo Studio e l’Applicazione del Metodo di Ilizarov

CORA :

„Center of rotation of angulation“

TSF :

Taylor Spatial Frame

Literatur

  1. Paley D (2018) The Ilizarov technology revolution: History of the discovery, dissemination, and technology transfer of the Ilizarov method. J Limb Lengthen Reconstr 4:115–128

    Article  Google Scholar 

  2. Codivilla A (1905) On the means of lengthening, in the lower limb, the muscles and tissues which are shortened through deformity. Am J Orthop Surg 2:353–368

    Google Scholar 

  3. Ombrédanne L (1913) Allongement d’un fémur sur un membre trop court. Bull Mem Soc Chir Paris 39:1177–1180

    Google Scholar 

  4. Putti V (1921) The operative lengthening of the femur. JAMA 77:934–935

    Article  Google Scholar 

  5. Wozasek GE, Radler C (1998) Externe Fixation in der Extremitätenverlängerung-Ein historischer Rückblick. Osteosynth Int 6:291–295

    Google Scholar 

  6. Pfeil J, Grill F, Graf R (1995) Extremitätenverlängerung, Deformitätenkorrektur, Pseudarthrosenbehandlung. Springer, Berlin, Heidelberg, S 1–5

    Google Scholar 

  7. Bosworth DM (1938) Skeletal distraction of the tibia. Surg Gynecol 66:912–924

    Google Scholar 

  8. Allan FG (1951) Leg-lengthening. Br Med J 1(4700):218–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Anderson WV (1952) Leg lengthening. J Bone Joint Surg Br 34:150

    Google Scholar 

  10. Ilizarov GA (1992) Transosseous osteosynthesis-theoretical and clinical aspects of the regeneration and growth of tissue. Springer, Berlin, Heidelberg, New York

    Book  Google Scholar 

  11. Aronson J, Harrison BH, Stewart CL, Harp JH Jr (1989) The histology of distraction osteogenesis using different external fixators. Clin Orthop Relat Res 241:106–116

    Article  Google Scholar 

  12. Aronson J, Good B, Stewart C, Harrison B, Harp J (1990) Preliminary studies of mineralization during distraction osteogenesis. Clin Orthop Relat Res 250:43–49

    Article  Google Scholar 

  13. Walker CW, Aronson J, Kaplan PA, Molpus WM, Seibert JJ (1991) Radiologic evaluation of limb-lengthening procedures. AJR Am J Roentgenol 156(2):353–358

    Article  CAS  PubMed  Google Scholar 

  14. Gavriel A, Golyakhovsky V (1988) Ilizarov: “the magician from Kurgan”. Bull Hosp Jt Dis Orthop Inst 48:12–16

    Google Scholar 

  15. Grill F (1984) Distraction of the epiphyseal cartilage as a method of limb lengthening. J Pediatr Orthop 4(1):105–108

    Article  CAS  PubMed  Google Scholar 

  16. Grill F, Franke J (1987) The Ilizarov distractor for the correction of relapsed or neglected clubfoot. J Bone Joint Surg Br 69(4):593–597

    Article  CAS  PubMed  Google Scholar 

  17. Wagner H (1971) Operative Beinverlängerung. Chirurgie 42:260–266

    CAS  Google Scholar 

  18. De Bastiani G, Aldegheri R, Renzi Brivio L, Trivella G (1986) Chondrodiatasis-controlled symmetrical distraction of the epiphyseal plate. Limb lengthening in children. J Bone Joint Surg Br 68(4):550–556

    Article  PubMed  Google Scholar 

  19. De Bastiani G, Aldegheri R, Renzi-Brivio L, Trivella G (1987) Limb lengthening by callus distraction (callotasis). J Pediatr Orthop 7(2):129–134

    Article  PubMed  Google Scholar 

  20. Green SA (1991) The Ilizarov method: rancho technique. Orthop Clin North Am 22(4):677–688

    Article  CAS  PubMed  Google Scholar 

  21. Green SA, Harris NL, Wall DM, Ishkanian J, Marinow H (1992) The rancho mounting technique for the Ilizarov method. A preliminary report. Clin Orthop Relat Res 280:104–116

    Article  Google Scholar 

  22. Devyatov AA, Kamerin VK, Ilizarov GA (1980) Plastic reconstruction of longitudinal bone defects by means of compression and subsequent distraction. Acta Chir Plast 22(1):32–41

    PubMed  Google Scholar 

  23. Ilizarov GA, Zusmanovitch FN, Markhashov AM, Khelimskii AM, Levitina LK, Azrapkin II (1980) Reconstruction of large defects of blood vessels on extremities by means of a gradual distraction. (an experimental study). Acta Chir Plast 22(3):156–165

    CAS  PubMed  Google Scholar 

  24. Ilizarov GA (1988) The principles of the Ilizarov method. Bull Hosp Jt Dis Orthop Inst 48(1):1–11

    CAS  PubMed  Google Scholar 

  25. Ilizarov GA (1989) The tension-stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and soft-tissue preservation. Clin Orthop Relat Res 238:249–281

    Article  Google Scholar 

  26. Ilizarov GA (1989) The tension-stress effect on the genesis and growth of tissues: part II. The influence of the rate and frequency of distraction. Clin Orthop Relat Res 239:263–285

    Article  Google Scholar 

  27. Ilizarov GA (1990) Clinical application of the tension-stress effect for limb lengthening. Clin Orthop Relat Res 250:8–26

    Article  Google Scholar 

  28. Paley D, Herzenberg JE, Tetsworth K, McKie J, Bhave A (1994) Deformity planning for frontal and sagittal plane corrective osteotomies. Orthop Clin North Am 25(3):425–465

    Article  CAS  PubMed  Google Scholar 

  29. Manner HM, Huebl M, Radler C, Ganger R, Petje G, Grill F (2007) Accuracy of complex lower-limb deformity correction with external fixation: a comparison of the Taylor spatial frame with the Ilizarov ring fixator. J Child Orthop 1(1):55–61

    Article  PubMed  Google Scholar 

  30. Gough VE, Whitehall SG (1962) Universal tire test machine. In: Proceedings of the FISITA Ninth International Technical Congress, S 117–137

    Google Scholar 

  31. Stewart D (1965) A platform with six degrees of freedom. Proc Instn Mech Eng 180:371–386

    Article  Google Scholar 

  32. Ruggles DK (2018) History of the Taylor spatial frame and six-axis deformity correction. In: Herzenberg JE (Hrsg) The art of limb alignment: Taylor spatial frame. Rubin Institute for Advanced Orthopedics. Sinai Hospital of Baltimore, Baltimore

    Google Scholar 

  33. Paley D (2011) History and science behind the six-axis correction external fixation devices in orthopaedic surgery. Oper Tech Orthop 21:125–128

    Article  Google Scholar 

  34. Seide K, Wolter D (1996) Universelle dreidimensionale Korrektur und Reposition mit dem Ringfixateur unter Anwendung der Hexapod-Anordnung. Unfallchirurg 99(6):422–424

    CAS  PubMed  Google Scholar 

  35. Radler C (2018) Planning software. In: Herzenberg JE (Hrsg) The art of limb alignment: Taylor spatial frame. Rubin Institute for Advanced Orthopedics. Sinai Hospital of Baltimore, Baltimore

    Google Scholar 

  36. Eidelman M, Bialik V, Katzman A (2006) Correction of deformities in children using the Taylor spatial frame. J Pediatr Orthop B 15(6):387–395

    Article  PubMed  Google Scholar 

  37. Rozbruch SR, Pugsley JS, Fragomen AT, Ilizarov S (2008) Repair of tibial nonunions and bone defects with the Taylor spatial frame. J Orthop Trauma 22(2):88–95

    Article  PubMed  Google Scholar 

  38. Tellisi N, Fragomen AT, Ilizarov S, Rozbruch SR (2008) Limb salvage reconstruction of the ankle with fusion and simultaneous tibial lengthening using the Ilizarov/Taylor spatial frame. HSS J 4(1):32–42

    Article  PubMed  Google Scholar 

  39. Ganger R, Radler C, Speigner B, Grill F (2010) Correction of post-traumatic lower limb deformities using the Taylor spatial frame. Int Orthop 34(5):723–730

    Article  PubMed  Google Scholar 

  40. Rödl R, Leidinger B, Böhm A, Winkelmann W (2003) Deformitätenkorrektur mit Ringfixateuren und Hexapoden—Ein Methodenvergleich. Z Orthop Ihre Grenzgeb 141(1):92–98

    Article  PubMed  Google Scholar 

  41. Ferreira N, Birkholtz F (2015) Radiographic analysis of hexapod external fixators: fundamental differences between the Taylor spatial frame and trueLok-hex. J Med Eng Technol 39(3):173–176

    Article  PubMed  Google Scholar 

  42. Pesenti S, Iobst CA, Launay F (2017) Evaluation of the external fixator trueLok hexapod system for tibial deformity correction in children. Orthop Traumatol Surg Res 103(5):761–764

    Article  CAS  PubMed  Google Scholar 

  43. Gessmann J, Frieler S, Königshausen M, Schildhauer TA, Hanusrichter Y, Seybold D, Baecker H (2021) Accuracy of radiographic measurement techniques for the Taylor spatial frame mounting parameters. BMC Musculoskelet Disord 22(1):284

    Article  PubMed  PubMed Central  Google Scholar 

  44. Messner J, Chhina H, Davidson S, Abad J, Cooper A (2021) Clinical outcomes in pediatric tibial lengthening and deformity correction: a comparison of the Taylor spatial frame with the orthex hexapod system. J Child Orthop 15(2):114–121

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gigi R, Mor J, Lidor I, Ovadia D, Segev E (2021) Auto strut: a novel smart robotic system for external fixation device for bone deformity correction, a preliminary experience. J Child Orthop 15(2):130–136

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Radler.

Ethics declarations

Interessenkonflikt

C. Radler: Smith & Nephew Inc.: Consultant, Vortragshonorare, Kurse; Nuvasive Inc.: Vortrags-Honorare, Kurse; MD Orthopaedics Inc.: Consultant, Vortragshonorare; UNFO Med. Ltd.: Consultant.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radler, C. Externe Fixateure zur Korrektur komplexer Deformitäten. Orthopädie 52, 710–718 (2023). https://doi.org/10.1007/s00132-023-04419-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-023-04419-w

Schlüsselwörter

Keywords

Navigation