Skip to main content
Log in

Die Bewegungsanalyse in der Exoprothetik der unteren Extremität – Möglichkeiten und Grenzen

Motion analysis in lower limb exoprosthetics—possibilities and limitations

  • Leitthema
  • Published:
Die Orthopädie Aims and scope Submit manuscript

This article has been updated

Zusammenfassung

Hintergrund

Die Bewegungsanalyse hat in der Orthopädietechnik eine hohe Relevanz, da sie ein essenzieller Teil des Versorgungsprozesses ist. Die Dokumentation der Bewegung mittels Videos und anderen instrumentellen Methoden wird in der Orthopädietechnik immer bedeutsamer, da Gebrauchsvorteile von komplexen Versorgungen am besten durch eine strukturierte Beobachtung belegt werden können.

Prozedere

Einer Bewegungsanalyse sollte immer eine Anamnese und klinische Untersuchung vorausgehen, um funktionelle Einschränkungen der untersuchten Person zu detektieren und dadurch Zusammenhänge zu Gangabweichungen herstellen zu können. Dazu gehört auch eine Überprüfung des vorhandenen Hilfsmittels. Neben dem Gehen in der Ebene ist bei Versorgungen mit Exoprothesen auch das Überwinden von Alltagshindernissen wie Treppen und Rampen von Interesse. Zur umfangreicheren Ermittlung des Funktionsstatus bieten sich funktionelle Test an. Bei speziellen Fragestellungen, insbesondere zu kinetischen Größen, ist eine instrumentelle 3‑D-Ganganalyse indiziert.

Abstract

Background

Gait analysis is of high relevance in prosthetics as it is an essential part of the fitting process. The documentation of movement by means of videos and instrumented methods is becoming increasingly important in prosthetics as benefits of a complex prosthesis can best be shown by structured observation.

Procedure

A movement analysis should always be preceded by an anamnesis and clinical examination in order to detect functional limitations of the examined person and thus to establish correlations to gait deviations. Additionally, the orthopaedic aid should be evaluated as well. In addition to walking on level ground, walking on everyday obstacles such as stairs and ramps is also of interest when observing people using prosthetic limbs. Functional tests can be used to determine the functional status more comprehensively. An instrumental-3D gait analysis is indicated for specific questions, especially regarding kinetic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Change history

  • 20 July 2023

    Die Abbildungen 3 und 4 wurden in der Darstellung angepasst.

Abbreviations

2MWT:

2‑Minuten-Gehtest

CoP :

Centre of pressure

ESAR :

Energy storing and returning

ESMAC :

European Society for Movement Analysis in Adults and Children

fps :

Frames per second

FSST :

Four Square Step Test

GAMMA :

Gesellschaft für die Analyse menschlicher Motorik und ihre klinische Anwendung

GCMAS :

Gait and Clinical Movement Analysis Society

GRF :

Ground reaction forces

LCI :

Locomotor Capability Index

MDR :

Medical device regulation

MRC :

Medical Research Council

PMS :

Post market surveillance

POGS :

Prosthetic Observational Gait Score

POM :

Performance-based outcome measures

PSFS :

Patient Specific Functional Scale

QUEST :

Quebec User Evaluation of Satisfaction with Assistive Technology

ROS :

Roll over Shape

SAT-PRO :

Satisfaction with Prosthesis Questionnaire

SCS :

Socket Comfort Score

TUG :

Timed up and Go Tests

UD :

Unified deformable segment

Literatur

  1. Gage JR, Schwartz MH, Koop SE, Novacheck TF (2009) The identification and treatment of gait problems in cerebral palsy. Wiley

    Google Scholar 

  2. Sander K, Rosenbaum D, Böhm H, Layher F, Lindner T, Wegener R et al (2012) Instrumentelle Gang- und Bewegungsanalyse bei muskuloskelettalen Erkrankungen. Orthopäde 41(10):802–819. https://doi.org/10.1007/s00132-012-1947-2

    Article  CAS  PubMed  Google Scholar 

  3. Doederlein L (2007) Die infantilen Zerebralparesen. Springer, London

    Google Scholar 

  4. Vaughan CL, Davis BL, O’Connor JC (1992) Dynamics of human gait. Human Kinetics Publishers

    Google Scholar 

  5. Kirtley C (2006) Clinical gait analysis. Elsevier, Edinburgh

    Google Scholar 

  6. Rose J, Gamble JG (2006) Human walking. Lippincott Williams and Wilkins

    Google Scholar 

  7. Perry J, Burnfield JM (2010) Gait analysis: normal and pathological function. Slack Incorporated

    Google Scholar 

  8. Baker RW (2013) Measuring walking: a handbook of clinical gait analysis. Wiley

    Google Scholar 

  9. Kay RM, Dennis S, Rethlefsen S, Reynolds RA, Skaggs DL, Tolo VT (2000) The effect of preoperative gait analysis on orthopaedic decision making. Clin Orthop Relat Res 372:217–222. https://doi.org/10.1097/00003086-200003000-00023

    Article  Google Scholar 

  10. Wren TAL, Gorton GE, Õunpuu S, Tucker CA (2011) Efficacy of clinical gait analysis: a systematic review. Gait Posture 34(2):149–153 (https://www.sciencedirect.com/science/article/pii/S0966636211001512)

    Article  PubMed  Google Scholar 

  11. Wolf SI (2013) Rolle der Bewegungsanalyse in Orthopädie und Unfallchirurgie. Trauma Berufskrankh 15(4):266–275. https://doi.org/10.1007/s10039-013-2039-1

    Article  Google Scholar 

  12. Klöpfer-Krämer I, Brand A, Wackerle H, Müßig J, Kröger I, Augat P (2020) Gait analysis—Available platforms for outcome assessment. Injury 51:S90–S96 (https://www.sciencedirect.com/science/article/pii/S0020138319307089)

    Article  PubMed  Google Scholar 

  13. Putz C, Alimusaj M, Heitzmann DWW, Götze M, Wolf SI, Block J (2017) Exo-Prothesenregister. Trauma Berufskrankh. https://doi.org/10.1007/s10039-017-0346-7 (https://link.springer.com/content/pdf/10.1007%2Fs10039-017-0346-7.pdf.)

    Article  Google Scholar 

  14. Schwarze M, Alimusaj M, Heitzmann DWW, Block J, Putz C, Wolf SI et al (2020) Begutachtung von Prothesenversorgungen der unteren Extremität. Orthopade 49(3):238–247

    Article  CAS  PubMed  Google Scholar 

  15. Hafner BJ, Gaunaurd IA, Morgan SJ, Amtmann D, Salem R, Gailey RS (2017) Construct validity of the prosthetic limb users survey of mobility (PLUS-M) in adults with lower limb amputation. Arch Phys Med Rehabil 98(2):277–285 (https://www.ncbi.nlm.nih.gov/pubmed/27590443, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5276724/pdf/nihms827934.pdf.)

    Article  PubMed  Google Scholar 

  16. Morgan SJ, Amtmann D, Abrahamson DC, Kajlich AJ, Hafner BJ (2014) Use of cognitive interviews in the development of the PLUS‑M item bank. Qual Life Res 23(6):1767–1775 (https://www.ncbi.nlm.nih.gov/pubmed/24442531, https://link.springer.com/content/pdf/10.1007%2Fs11136-013-0618-z.pdf)

    Article  PubMed  PubMed Central  Google Scholar 

  17. University of Washington Center on Outcomes Research in Rehabilitation, PLUS‑M Prosthetic Limb Users Survey. https://plus-m.org/, 2013 Zugegriffen: 13. Febr. 2023

  18. Franchignoni F, Orlandini D, Ferriero G, Moscato TA (2004) Reliability, validity, and responsiveness of the locomotor capabilities index in adults with lower-limb amputation undergoing prosthetic training. Arch Phys Med Rehabil 85(5):743–748 (http://www.ncbi.nlm.nih.gov/pubmed/15129398, http://ac.els-cdn.com/S0003999303009389/1-s2.0-S0003999303009389-main.pdf?_tid=5d037f3c-658b-11e2-9b96-00000aab0f26&acdnat=1358966181_74d64a1d180329ff87490acad0638590.)

    Article  PubMed  Google Scholar 

  19. Daub U, Block J, Alimusaj M, Schneider U (2022) Bewertungsinstrumente in der Orthopädietechnik – am Beispiel der Versorgung von Menschen nach Beinamputation. Orthopädietechnik 09/2022. https://360-ot.de/bewertungsinstrumente-in-der-orthopaedietechnik-am-beispiel-der-versorgung-von-menschen-nach-beinamputation/?v=86e6e88dd080

  20. Demers L, Weiss-Lambrou R, Ska B (1996) Development of the Quebec user evaluation of satisfaction with assistive technology (QUEST). Assist Technol 8(1):3–13

    Article  CAS  PubMed  Google Scholar 

  21. Demers L, Weiss-Lambrou R, Ska B (2000) Item analysis of the Quebec User Evaluation of Satisfaction with Assistive Technology (QUEST). Assist Technol 12(2):96–105

    Article  CAS  PubMed  Google Scholar 

  22. Shirley-Ryan-Abilitylab (2023) Quebec User Evaluation of Satisfaction with Assistive Technology. https://www.sralab.org/rehabilitation-measures/quebec-user-evaluation-satisfaction-assistive-technology. Zugegriffen: 13. Febr. 2023

  23. Wahl B, Gutenbrunner C, Greitemann B, Oergel M, Somoza López D, Schiller J et al (2023) The German Version of the Satisfaction with Prosthesis Questionnaire: Translation, Adaptation, Reliability, and Validity in Adults with Major Lower-Limb Amputation. J Prosthet Orthot 35(1):44–54

    Article  Google Scholar 

  24. Hanspal RS, Fisher K, Nieveen R (2003) Prosthetic socket fit comfort score. Disabil Rehabil 25(22):1278–1280

    Article  CAS  PubMed  Google Scholar 

  25. Kröger K, Berg C, Santosa F, Malyar N, Reinecke H (2017) Amputationen der unteren Extremität in Deutschland. Dtsch Arztebl Int 114(8):130–136 (https://www.aerzteblatt.de/int/article.asp?id=186399)

    Article  PubMed  PubMed Central  Google Scholar 

  26. Read HS, Hazlewood ME, Hillman SJ, Prescott RJ, Robb JE (2003) Edinburgh visual gait score for use in cerebral palsy. J Pediatr Orthop 23(3):296–301 (http://ovidsp.tx.ovid.com/ovftpdfs/FPDDNCOBPHPDMP00/fs046/ovft/live/gv023/01241398/01241398-200305000-00005.pdf)

    Article  PubMed  Google Scholar 

  27. Ong AM, Hillman SJ, Robb JE (2008) Reliability and validity of the Edinburgh Visual Gait Score for cerebral palsy when used by inexperienced observers. Gait Posture 28(2):323–326 (http://ac.els-cdn.com/S0966636208000325/1-s2.0-S0966636208000325-main.pdf?_tid=881800b2-9e94-11e6-ac99-00000aab0f01&acdnat=1477827325_811789b30fd11b70ce8ca44da7c4a25b)

    Article  CAS  PubMed  Google Scholar 

  28. Viehweger E, Zurcher Pfund L, Helix M, Rohon MA, Jacquemier M, Scavarda D et al (2010) Influence of clinical and gait analysis experience on reliability of observational gait analysis (Edinburgh Gait Score Reliability). Ann Phys Rehabil Med 53(9):535–546 (http://ac.els-cdn.com/S1877065710002447/1-s2.0-S1877065710002447-main.pdf?_tid=8a427ee4-9e94-11e6-92df-00000aab0f6c&acdnat=1477827329_30502c01675c2a28d753eb95693fa148; https://www.sciencedirect.com/science/article/pii/S1877065710002447?via%3Dihub.)

    Article  CAS  PubMed  Google Scholar 

  29. Hillman SJ, Donald SC, Herman J, McCurrach E, McGarry A, Richardson AM et al (2010) Repeatability of a new observational gait score for unilateral lower limb amputees. Gait Posture 32(1):39–45 (http://ac.els-cdn.com/S0966636210000779/1-s2.0-S0966636210000779-main.pdf?_tid=254b8ade-9e95-11e6-83c8-00000aab0f6c&acdnat=1477827589_77766051e39ec8324b228ba4e9baad8d, https://www.sciencedirect.com/science/article/pii/S0966636210000779?via%3Dihub.)

    Article  PubMed  Google Scholar 

  30. Shirley-Ryan-Abilitylab (2023) Reahbilitation measures database. https://www.sralab.org/rehabilitation-measures. Zugegriffen: 13. Febr. 2023

  31. Major MJ, Fatone S, Roth EJ (2013) Validity and reliability of the Berg Balance Scale for community-dwelling persons with lower-limb amputation. Arch Phys Med Rehabil 94(11):2194–2202 (http://ac.els-cdn.com/S0003999313005248/1-s2.0-S0003999313005248-main.pdf?_tid=7b8032e2-4ec9-11e4-825d-00000aacb35d&acdnat=1412758979_e412c28156860db8948e2d76bfdca8eb.)

    Article  PubMed  Google Scholar 

  32. Shirley-Ryan-Abilitylab (2020) Barthel Index. https://www.sralab.org/rehabilitation-measures/barthel-index. Zugegriffen: 13. Febr. 2023

  33. Mahoney FI, Barthel DW (1965) Functional evaluation: the Barthel index. Md State Med J 14:61–65

    CAS  PubMed  Google Scholar 

  34. Sawers A, Hafner B (2018) Validation of the narrowing beam walking test in lower limb prosthesis users. Arch Phys Med Rehabil 99(8):1491–1498.e1 (https://www.sciencedirect.com/science/article/pii/S0003999318302193, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6064384/pdf/nihms958897.pdf)

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sawers A, Hafner BJ (2018) A study to assess whether fixed-width beam walking provides sufficient challenge to assess balance ability across lower limb prosthesis users. Clin Rehabil 32(4):483–492. https://doi.org/10.1177/0269215517732375

    Article  PubMed  Google Scholar 

  36. Duncan PW, Weiner DK, Chandler J, Studenski S (1990) Functional reach: a new clinical measure of balance. J Gerontol 45(6):M192–M197. https://doi.org/10.1093/geronj/45.6.M192

    Article  CAS  PubMed  Google Scholar 

  37. Shirley-Ryan-Abilitylab (2013) Functional reach test / modified functional reach test. https://www.sralab.org/rehabilitation-measures/functional-reach-test-modified-functional-reach-test. Zugegriffen: 13. Febr. 2023

  38. Gailey RS, Roach KE, Applegate EB, Cho B, Cunniffe B, Licht S et al (2002) The amputee mobility predictor: an instrument to assess determinants of the lower-limb amputee’s ability to ambulate. Arch Phys Med Rehabil 83(5):613–627

    Article  PubMed  Google Scholar 

  39. Highsmith MJ, Kahle JT, Kaluf B, Miro RM, Mengelkoch LJ, Klenow TD (2016) Psychometric evaluation of the hill assessment index (Hai) and stair assessment index (Sai) in high-functioning transfemoral amputees. Technol Innov 18(2–3):193–201

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shirley-Ryan-Abilitylab (2013) 2 minute walk test. https://www.sralab.org/rehabilitation-measures/2-minute-walk-test. Zugegriffen: 13. Febr. 2023

  41. Barnett CT, Bisele M, Jackman JS, Rayne T, Moore NC, Spalding JL et al (2016) Manipulating walking path configuration influences gait variability and six-minute walk test outcomes in older and younger adults. Gait Posture 44:221–226 (http://www.sciencedirect.com/science/article/pii/S096663621500990X.)

    Article  CAS  PubMed  Google Scholar 

  42. Barry Deathe A, Miller W (2005) The L test of functional mobility: measurement properties of a modified version of the timed “up & go” test designed for people with lower-limb amputations. Phys Ther 85(7):626–635

    Article  PubMed  Google Scholar 

  43. Podsiadlo D, Richardson S (1991) The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 39(2):142–148

    Article  CAS  PubMed  Google Scholar 

  44. Dite W, Temple VA (2002) A clinical test of stepping and change of direction to identify multiple falling older adults. Arch Phys Med Rehabil 83(11):1566–1571 (http://www.ncbi.nlm.nih.gov/pubmed/12422327, http://ac.els-cdn.com/S0003999302002538/1-s2.0-S0003999302002538-main.pdf?_tid=c5661d82-ce86-11e2-bab1-00000aacb35e&acdnat=1370509080_d604bb31195a70b9f3277ad043000405)

    Article  PubMed  Google Scholar 

  45. Shirley-Ryan-Abilitylab (2021) Four square step test. https://www.sralab.org/rehabilitation-measures/four-square-step-test. Zugegriffen: 13. Febr. 2023

  46. Davis RB, Õunpuu S, Tyburski D, Gage JR (1991) A gait analysis data collection and reduction technique. Hum Mov Sci 10(5):575–587 (http://www.sciencedirect.com/science/article/pii/016794579190046Z; https://www.sciencedirect.com/science/article/abs/pii/016794579190046Z?via%3Dihub)

    Article  Google Scholar 

  47. Kadaba MP, Ramakrishnan HK, Wootten ME, Gainey J, Gorton G, Cochran GV (1989) Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. J Orthop Res 7(6):849–860 (http://www.ncbi.nlm.nih.gov/pubmed/2795325.)

    Article  CAS  PubMed  Google Scholar 

  48. Ludwigs E, Bellmann M, Schmalz T, Blumentritt S (2010) Biomechanical differences between two exoprosthetic hip joint systems during level walking. Prosthet Orthot Int 34(4):449–460 (http://www.ncbi.nlm.nih.gov/pubmed/20681929, http://poi.sagepub.com/content/34/4/449.full.pdf)

    Article  PubMed  Google Scholar 

  49. Heitzmann D, Rist V, Block J, Alimusaj M, Wolf S (2022) Markerless versus marker-based motion analysis in subjects with lower limb amputation: a case series. Gait Posture 97:S95–S96 (https://www.sciencedirect.com/science/article/pii/S096663622200265X)

    Article  Google Scholar 

  50. John J (1984) Grading of muscle power: comparison of MRC and analogue scales by physiotherapists. Medical Research Council. Int J Rehabil Res 7(2):173–181

    Article  CAS  PubMed  Google Scholar 

  51. Bohannon RW (2017) Normative reference values for the two-minute walk test derived by meta-analysis. J Phys Ther Sci 29(12):2224–2227 (https://www.jstage.jst.go.jp/article/jpts/29/12/29_jpts-2017-467/_pdf)

    Article  PubMed  PubMed Central  Google Scholar 

  52. Portnoy S, Yarnitzky G, Yizhar Z, Kristal A, Oppenheim U, Siev-Ner I et al (2007) Real-time patient-specific finite element analysis of internal stresses in the soft tissues of a residual limb: a new tool for prosthetic fitting. Ann Biomed Eng 35(1):120–135 (http://download.springer.com/static/pdf/948/art%253A10.1007%252Fs10439-006-9208-3.pdf?auth66=1394191298_fcca2971b7e4857b7c928ae1386bc7c2&ext=.pdf)

    Article  CAS  PubMed  Google Scholar 

  53. Wolf SI, Alimusaj M, Fradet L, Siegel J, Braatz F (2009) Pressure characteristics at the stump/socket interface in transtibial amputees using an adaptive prosthetic foot. Clin Biomech 24(10):860–865

    Article  Google Scholar 

  54. Bellmann M (2018) Biomechanische Untersuchung der Kraftübertragungsmechanismen zwischen Oberschenkelstumpf und Prothesenschaft, Dissertation, Fakultät V – Verkehrs- und Maschinensysteme. TU Berlin

    Google Scholar 

  55. Boone DA, Kobayashi T, Chou TG, Arabian AK, Coleman KL, Orendurff MS et al (2013) Influence of malalignment on socket reaction moments during gait in amputees with transtibial prostheses. Gait Posture 37(4):620–626 (http://ac.els-cdn.com/S0966636212003748/1-s2.0-S0966636212003748-main.pdf?_tid=9ffe08e0-464b-11e5-a863-00000aab0f26&acdnat=1439972812_df3e7daf31a9a104373d48f1b041af60)

    Article  PubMed  Google Scholar 

  56. Hansen AH, Childress DS, Knox EH (2000) Prosthetic foot roll-over shapes with implications for alignment of trans-tibial prostheses. Prosthet Orthot Int 24(3):205–215 (http://www.ncbi.nlm.nih.gov/pubmed/11195355)

    Article  CAS  PubMed  Google Scholar 

  57. Hansen AH, Meier MR, Sam M, Childress DS, Edwards ML (2003) Alignment of trans-tibial prostheses based on roll-over shape principles. Prosthet Orthot Int 27(2):89–99. https://doi.org/10.1080/03093640308726664

    Article  CAS  PubMed  Google Scholar 

  58. Hansen AH, Childress DS (2004) Effects of shoe heel height on biologic rollover characteristics during walking. J Rehabil Res Dev 41(4):547–554

    Article  PubMed  Google Scholar 

  59. Curtze C, Hof AL, van Keeken HG, Halbertsma JP, Postema K, Otten B (2009) Comparative roll-over analysis of prosthetic feet. J Biomech 42(11):1746–1753 (http://www.ncbi.nlm.nih.gov/pubmed/19446814, http://ac.els-cdn.com/S0021929009002097/1-s2.0-S0021929009002097-main.pdf?_tid=c9430ee0-ccf3-11e2-9806-00000aab0f27&acdnat=1370336000_3397a85843586c3210c5a483763ef5ff)

    Article  PubMed  Google Scholar 

  60. Curtze C (2012) Neuromechanics of movement in lower limb amputees. Dissertation, Medische Wetenschappen, Rijksuniversiteit Groningen, Groningen

    Google Scholar 

  61. Heitzmann D, Högerle VS, Trinler U, Wolf SI, Alimusaj M (2021) Roll over characteristics of 3D printed prosthetic feet in comparison to conventional designs. Gait Posture 90:95–97

    Article  Google Scholar 

  62. Trinler U, Heitzmann DWW, Hitzeroth S, Alimusaj M, Rehg M, Hogan A (2022) Biomechanical comparison of a 3D-printed prosthetic foot with conventional feet in people with transtibial amputation—a prospective cohort study. Prosthet Orthot Int. https://doi.org/10.1097/PXR.0000000000000180 (https://journals.lww.com/poijournal/Abstract/2023/02000/Biomechanical_comparison_of_a_3D_printed.11.aspx)

  63. Takahashi KZ, Kepple TM, Stanhope SJ (2012) A l for quantifying total power of anatomical and prosthetic below-knee structures during stance in gait. J Biomech 45(15):2662–2667

    Article  PubMed  Google Scholar 

  64. Heitzmann DWW, Salami F, De Asha AR, Block J, Putz C, Wolf SI et al (2018) Benefits of an increased prosthetic ankle range of motion for individuals with a trans-tibial amputation walking with a new prosthetic foot. Gait Posture 64:174–180 (https://www.ncbi.nlm.nih.gov/pubmed/29913354, https://www.sciencedirect.com/science/article/pii/S0966636218307197?via%3Dihub.)

    Article  PubMed  Google Scholar 

  65. Blumentritt S (1997) A new biomechanical method for determination of static prosthetic alignment. Prosthet Orthot Int 21:107–113

    Article  CAS  PubMed  Google Scholar 

  66. Blumentritt S, Schmalz T, Jarasch R, Schneider M (1999) Effects of sagittal plane prosthetic alignment on standing trans-tibial amputee knee loads. Prosthet Orthot Int 23(3):231–238. https://doi.org/10.3109/03093649909071639

    Article  CAS  PubMed  Google Scholar 

  67. Blumentritt S, Schmalz T, Jarasch R (2001) Die Bedeutung des statischen Prothesenaufbaus für das Stehen und Gehen des Unterschenkelamputierten. Orthopäde 30 (3):161–168. https://doi.org/10.1007/s001320050590

  68. Bellmann SBM, Pusch M, Schmalz T, Schönemeier M (2017) Das 3D L.A.S.A.R. – eine neue Generation der Statik-Analyse zur Optimierung des Aufbaus von Prothesen und Orthesen. Orthopäd Tech 12/17 (https://360-ot.de/das-3d-l-a-s-a-r-eine-neue-generation-der-statik-analyse-zur-optimierung-des-aufbaus-von-prothesen-und-orthesen/?v=86e6e88dd080)

  69. Bellmann M, Schmalz T, Blumentritt S (2010) Comparative biomechanical analysis of current microprocessor-controlled prosthetic knee joints. Arch Phys Med Rehabil 91(4):644–652

    Article  PubMed  Google Scholar 

  70. Heitzmann DWW, Rack R, Kaib T, Block J, Alimusaj M, Wolf SI (2019) 3D-SPA, a method to quantity the three dimensional static prosthetic alignment during conventional gait analysis. Gait Posture 73:80–81 (https://www.sciencedirect.com/science/article/pii/S0966636219307805)

    Article  Google Scholar 

  71. B.f. Gesundheit, Bekanntmachung eines Beschlusses des Gemeinsamen Bundesausschusses über die Neufassung der Hilfsmittel Richtlinie vom: 15.03.2012, in: G. Bundesausschuss (Ed.) Bundesanzeiger, Bundesanzeiger, 2012.

  72. B.f. Gesundheit, Bekanntmachung eines Beschlusses des Gemeinsamen Bundesausschusses über eine Änderung der Häusliche Krankenpflege-Richtlinie, der Spezialisierte Ambulante Palliativversorgungs-Richtlinie, der Soziotherapie-Richtlinie, der Hilfsmittel-Richtlinie, der Heilmittel-Richtlinie, der Krankentransport-Richtlinie und der Arbeitsunfähigkeits-Richtlinie: COVID-19-Epidemie – Verlängerung befristeter bundeseinheitlicher Sonderregelungen zum Entlassmanagement sowie zum Genehmigungsverzicht für Krankentransporte vom: 18.03.2021, in: G. Bundesausschuss (Ed.) Bundesanzeiger, Bundesanzeiger, 2021.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Walter Werner Heitzmann Dipl. Ing. (FH).

Ethics declarations

Interessenkonflikt

D.W.W. Heitzmann, J. Block, U. Trinler, S.I. Wolf und M. Alimusaj geben an, dass kein Interessenkonflikt besteht.

In diesem Beitrag werden Daten aus Bewegungsanalytischen Studien von Menschen dargestellt. Die Studien wurden im Einklang mit der Deklaration von Helsinki durchgeführt, alle Teilnehmer und Teilnehmerinnen wurden aufgeklärt und haben schriftlich zugestimmt. Es liegt ein positives Ethikvotum vor (Universität Heidelberg, Ethikkommission der Med. Fakultät Zeichen S‑048/2018).

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heitzmann, D.W.W., Block, J., Trinler, U. et al. Die Bewegungsanalyse in der Exoprothetik der unteren Extremität – Möglichkeiten und Grenzen. Orthopädie 52, 631–642 (2023). https://doi.org/10.1007/s00132-023-04408-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-023-04408-z

Schlüsselwörter

Keywords

Navigation