Skip to main content
Log in

Stabilisierung und Korrektur der medialen Säule im Rahmen der operativen Pes-planovalgus-Therapie

Surgical procedures for the correction and stabilization of pes planovalgus

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Bei der Pathogenese des Pes planovalgus kommt der medialen Säule des Fußes eine besondere Rolle zu. Die relevanten Strukturen umfassen den tibiokalkaneonavikulären Bandapparat, die navikulokuneiformen Gelenke inklusive der Ossa cuneiformia selbst und auch das erste tarsometatarsale Gelenk. Daher ist eine Kombination knöcherner und weichteiliger Korrekturen bei der Korrektur des Pes planovalgus zu berücksichtigen. Die hier vorliegende Arbeit beschreibt stabilisierende und korrigierende Eingriffe an der medialen Säule des Fußes mitsamt der zugrundeliegenden Anatomie und Biomechanik.

Abstract

The medial column of the foot is a relevant factor of the pathogenesis of pes planovalgus. Crucial anatomic structures are the tibiocalcaneonavicular ligament complex, the naviculocuneiform joints, including the ossa cuneiformia, and the first tarsometatarsal joint. A combination of bony and soft tissue reconstructive techniques must, therefore, be taken into account when treating pes planovalgus. The present article presents stabilizing and correcting surgical procedures for the medial column of the foot, including basic anatomy and biomechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Abbreviations

FDL:

Flexor digitorum longus-Sehne

LLCOT :

„Lateral lengthening calcaneus osteotomy“

NC :

Naviculocuneiform

TCN :

Tibiocalcaneonavikular

TMT :

Tarsometatarsal

TN :

Talonavikular

Literatur

  1. Flores DV, Mejia Gomez C, Fernandez Hernando M, Davis MA, Pathria MN (2019) Adult acquired flatfoot deformity: anatomy, biomechanics, staging, and imaging findings. Radiographics 39(5):1437–1460

    Article  Google Scholar 

  2. Taniguchi A, Tanaka Y, Takakura Y, Kadono K, Maeda M, Yamamoto H (2003) Anatomy of the spring ligament. J Bone Joint Surg Am 85(11):2174–2178

    Article  Google Scholar 

  3. Whittaker EC, Aubin PM, Ledoux WR (2011) Foot bone kinematics as measured in a cadaveric robotic gait simulator. Gait Posture 33(4):645–650

    Article  Google Scholar 

  4. Walter WR, Hirschmann A, Alaia EF, Tafur M, Rosenberg ZS (2019) Normal anatomy and traumatic injury of the midtarsal (Chopart) joint complex: an imaging primer. Radiographics 39(1):136–152

    Article  Google Scholar 

  5. Domzalski M, Kwapisz A, Zabierek S (2019) Morphology of spring ligament fibrocartilage complex lesions. J Am Podiatr Med Assoc 109(5):407–411

    Article  Google Scholar 

  6. Deland JT, de Asla RJ, Sung IH, Ernberg LA, Potter HG (2005) Posterior tibial tendon insufficiency: which ligaments are involved? Foot Ankle Int 26(6):427–435

    Article  Google Scholar 

  7. Chu IT, Myerson MS, Nyska M, Parks BG (2001) Experimental flatfoot model: the contribution of dynamic loading. Foot Ankle Int 22(3):220–225

    Article  CAS  Google Scholar 

  8. Xu C, Li MQ, Wang C, Liu H (2019) Nonanatomic versus anatomic techniques in spring ligament reconstruction: biomechanical assessment via a finite element model. J Orthop Surg Res 14(1):114–19

    Article  Google Scholar 

  9. Ryssman DB, Jeng CL (2017) Reconstruction of the spring ligament with a posterior tibial tendon autograft: technique tip. Foot Ankle Int 38(4):452–456

    Article  Google Scholar 

  10. Williams BR, Ellis SJ, Deyer TW, Pavlov H, Deland JT (2010) Reconstruction of the spring ligament using a peroneus longus autograft tendon transfer. Foot Ankle Int 31(7):567–577

    Article  Google Scholar 

  11. Brodell JD, MacDonald A, Perkins JA, Deland JT, Oh I (2019) Deltoid-spring ligament reconstruction in adult acquired flatfoot deformity with medial peritalar instability. Foot Ankle Int 40(7):753–761

    Article  Google Scholar 

  12. Nery C, Lemos AVKC, Raduan F, Mansur NSB, Baumfeld D (2018) Combined spring and deltoid ligament repair in adult-acquired flatfoot. Foot Ankle Int 39(8):903–907

    Article  Google Scholar 

  13. Aynardi MC, Saloky K, Roush EP, Juliano P, Lewis GS (2019) Biomechanical evaluation of spring ligament augmentation with the fibertape device in a cadaveric flatfoot model. Foot Ankle Int 40(5):596–602

    Article  Google Scholar 

  14. Lui TH (2017) Arthroscopic repair of superomedial spring ligament by talonavicular arthroscopy. Arthrosc Tech 6(1):e31–e35

    Article  Google Scholar 

  15. Gerstner GJB, Gerstner SJ, Rammelt S (2020) Deltoid and spring ligament lesions in flat foot treatment. Fuß Sprunggelenk 18:2–12

    Article  Google Scholar 

  16. Smith JT, Bluman EM (2012) Update on stage IV acquired adult flatfoot disorder: when the deltoid ligament becomes dysfunctional. Foot Ankle Clin 17(2):351–360

    Article  Google Scholar 

  17. Boffeli TJ, Schnell KR (2017) Cotton osteotomy in flatfoot reconstruction: a review of consecutive cases. J Foot Ankle Surg 56(5):990–995

    Article  Google Scholar 

  18. Scott AT, Hendry TM, Iaquinto JM, Owen JR, Wayne JS, Adelaar RS (2007) Plantar pressure analysis in cadaver feet after bony procedures commonly used in the treatment of stage II posterior tibial tendon insufficiency. Foot Ankle Int 28(11):1143–1153

    Article  Google Scholar 

  19. Kunas GC, Do HT, Aiyer A, Deland JT, Ellis SJ (2018) Contribution of medial cuneiform osteotomy to correction of longitudinal arch collapse in stage IIb adult-acquired flatfoot deformity. Foot Ankle Int 39(8):885–893

    Article  Google Scholar 

  20. Conti MS, Garfinkel JH, Kunas GC, Deland JT, Ellis SJ (2019) Postoperative medial cuneiform position correlation with patient-reported outcomes following cotton osteotomy for reconstruction of the stage II adult-acquired flatfoot deformity. Foot Ankle Int 40(5):491–498

    Article  Google Scholar 

  21. Wang CS, Tzeng YH, Lin CC, Chang MC, Chiang CC (2019) Comparison of screw fixation versus non-fixation in dorsal opening wedge medial cuneiform osteotomy of adult acquired flatfoot. Foot Ankle Surg 26(2):193–197. https://doi.org/10.1016/j.fas.2019.01.011

    Article  CAS  Google Scholar 

  22. Tsai J, McDonald E, Sutton R, Raikin SM (2019) Severe flexible pes planovalgus deformity correction using trabecular metallic wedges. Foot Ankle Int 40(4):402–407

    Article  Google Scholar 

  23. Romeo G, Bianchi A, Cerbone V, Parrini MM, Malerba F, Martinelli N (2019) Medial cuneiform opening wedge osteotomy for correction of flexible flatfoot deformity: trabecular titanium vs. bone allograft wedges. Biomed Res Int 2019:1472471

    Article  Google Scholar 

  24. League AC, Parks BG, Schon LC (2008) Radiographic and pedobarographic comparison of femoral head allograft versus block plate with dorsal opening wedge medial cuneiform osteotomy: a biomechanical study. Foot Ankle Int 29(9):922–926

    Article  Google Scholar 

  25. Ling JS, Ross KA, Hannon CP, Egan C, Smyth NA, Hogan MV et al (2013) A plantar closing wedge osteotomy of the medial cuneiform for residual forefoot supination in flatfoot reconstruction. Foot Ankle Int 34(9):1221–1226

    Article  Google Scholar 

  26. Hirose CB, Johnson JE (2004) Plantarflexion opening wedge medial cuneiform osteotomy for correction of fixed forefoot varus associated with flatfoot deformity. Foot Ankle Int 25(8):568–574

    Article  Google Scholar 

  27. Van Beek C, Greisberg J (2011) Mobility of the first ray: review article. Foot Ankle Int 32(9):917–922

    Article  Google Scholar 

  28. Doty JF, Coughlin MJ (2013) Hallux valgus and hypermobility of the first ray: facts and fiction. Int Orthop 37(9):1655–1660

    Article  Google Scholar 

  29. Claassen L, Venjakob E, Yao D, Lerch M, Plaass C, Colsman CS et al (2019) The computed tomographybased anatomy of the ossa cuneiformia. Orthop Rev (Pavia) 11(2):7876

    Article  Google Scholar 

  30. Mason LW, Tanaka H (2012) The first tarsometatarsal joint and its association with hallux valgus. Bone Joint Res 1(6):99–103

    Article  CAS  Google Scholar 

  31. Dietze A, Bahlke U, Martin H, Mittlmeier T (2013) First ray instability in hallux valgus deformity: a radiokinematic and pedobarographic analysis. Foot Ankle Int 34(1):124–130

    Article  Google Scholar 

  32. Cowie S, Parsons S, Scammell B, McKenzie J (2012) Hypermobility of the first ray in patients with planovalgus feet and tarsometatarsal osteoarthritis. Foot Ankle Surg 18(4):237–240

    Article  CAS  Google Scholar 

  33. Avino A, Patel S, Hamilton GA, Ford LA (2008) The effect of the lapidus arthrodesis on the medial longitudinal arch: a radiographic review. J Foot Ankle Surg 47(6):510–514

    Article  Google Scholar 

  34. Coughlin MJ, Jones CP (2007) Hallux valgus and first ray mobility. A prospective study. J Bone Joint Surg Am 89(9):1887–1898

    Article  Google Scholar 

  35. Coughlin MJ, Jones CP, Viladot R, Golano P, Grebing BR, Kennedy MJ et al (2004) Hallux valgus and first ray mobility: a cadaveric study. Foot Ankle Int 25(8):537–544

    Article  Google Scholar 

  36. Faber FW, Mulder PG, Verhaar JA (2004) Role of first ray hypermobility in the outcome of the Hohmann and the lapidus procedure. A prospective, randomized trial involving one hundred and one feet. J Bone Joint Surg Am 86(3):486–495

    Article  Google Scholar 

  37. Aiyer A, Dall GF, Shub J, Myerson MS (2016) Radiographic correction following reconstruction of adult acquired flat foot deformity using the cotton medial cuneiform osteotomy. Foot Ankle Int 37(5):508–513

    Article  Google Scholar 

  38. Steiner CS, Gilgen A, Zwicky L, Schweizer C, Ruiz R, Hintermann B (2019) Combined subtalar and naviculocuneiform fusion for treating adult acquired flatfoot deformity with medial arch collapse at the level of the naviculocuneiform joint. Foot Ankle Int 40(1):42–47. https://doi.org/10.1177/1071100718800295

    Article  Google Scholar 

  39. Gerrity M, Williams M (2019) Naviculocuneiform arthrodesis in adult flatfoot: a case series. J Foot Ankle Surg 58(2):352–356. https://doi.org/10.1053/j.jfas.2018.08.027

    Article  Google Scholar 

  40. Ajis A, Geary N (2014) Surgical technique, fusion rates, and planovalgus foot deformity correction with naviculocuneiform fusion. Foot Ankle Int 35(3):232–237

    Article  Google Scholar 

  41. Swords M, Tomlinson M, Kabash C (2020) Midfoot arthrodesis for adult acquired flatfoot. Fuß Sprunggelenk 18:30–36

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Claaßen.

Ethics declarations

Interessenkonflikt

L. Claaßen, S. Ettinger, D. Yao, M. Lerch, C. Stukenborg-Colsman und C. Plaaß geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Claaßen, L., Ettinger, S., Yao, D. et al. Stabilisierung und Korrektur der medialen Säule im Rahmen der operativen Pes-planovalgus-Therapie. Orthopäde 49, 968–975 (2020). https://doi.org/10.1007/s00132-020-03992-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-020-03992-8

Schlüsselwörter

Keywords

Navigation