Skip to main content
Log in

Interkorporelle Fusionsverfahren an der Wirbelsäule

Die Entwicklung aus historischer Sicht

Interbody fusion procedures

Development from a historical perspective

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Entwicklung der interkorporellen Fusionsverfahren erstreckt sich mittlerweile über viele Jahrzehnte und ist noch immer nicht abgeschlossen.

Diskussion

Aufgrund der Abwesenheit von entsprechenden Implantaten erfolgten die initialen Fusionen durch Dekortizierung der dorsalen und lateralen Strukturen der Wirbelsäule und anschließendes Anlagern von autologem Knochenmaterial. Trotz passabler Fusionsergebnisse manifestierte sich das Bestreben nach einer besseren Primärstabilität und höheren Fusionsraten. Zudem verbreitete sich auch das Verständnis, dass der primär lasttragende Anteil der Wirbelsäule ventral im Bereich des Corpus der Wirbelkörper liegt. Diese Überlegungen führten letztendlich zur Entwicklung der PLIF-Technik (posteriore lumbale interkorporelle Fusion), die unter Cloward 1953 deutlich an Popularität gewann. Nach Ausräumung des Bandscheibenfaches interpositionierte er Beckenkammknochenblöcke zwischen die Wirbelkörper, die sich entsprechend verklemmten. Basierend auf dieser Technik und diesen Überlegungen erfolgte in den 1970er Jahren die Entwicklung von intervertebralen Implantaten. Der sog. „Bagby Basket“ war der erste intervertebrale Cage, der zunächst bei Pferden mit „Wobbler-Syndrom“ eingesetzt wurde. Weitere Meilensteine in der Verbesserung des Cagedesigns schlossen sich an, was zur Herstellung vielzähliger Implantatformen und -materialien führte. Das Elastizitätsmodul der intersomatischen Implantate näherte sich durch moderne Werkstoffe immer mehr dem von Knochen an, so dass ein Einsintern der Cages reduziert und die Fusionen weiter gesteigert werden konnten. Durch den Einsatz von Schrauben-Stab-Systemen konnte die Primärstabilität zusätzlich weiter gesteigert werden, sodass die dorsale Instrumentierung heute den Standard im Rahmen von PLIF (posteriore lumbale interkorporelle Fusion)- und TLIF-Prozeduren (transforaminale lumbale interkorporelle Fusion) darstellt. Das von Harms beschriebene TLIF-Verfahren war eine neue Modifikation und konnte Komplikationen bei lumbalen Fusionen minimieren sowie die Invasivität des Eingriffs reduzieren.

Schlussfolgerung

Heutzutage steht uns eine Vielzahl unterschiedlichster Implantate und Implantationstechniken zur Verfügung, was die interkorporelle Fusion in PLIF- und TLIF-Technik zu sicheren und erfolgreichen Verfahren macht.

Abstract

Background

The development of interbody fusion now stretches over many decades and is still not complete.

Discussion

Due to the lack of appropriate implants, the initial fusions were performed via decortication of the dorsal and lateral structures of the spine, followed by placement of an autograft. Despite acceptable fusion results, better primary stability and higher fusion rates were desired. In addition, it became known that the primary load-bearing of the spine is located ventrally in the area of the corpus of the vertebrae. These considerations led to the development of the PLIF technique that was introduced by Cloward in 1953 and gained significantly in popularity. After removal of the intervertebral disc, he positioned iliac crest bone blocks between the vertebral bodies. Based on this technique and these considerations, intervertebral implants were developed in the 1970s. The so-called Bagby Basket was the first intervertebral cage that was initially used in horses with wobbler syndrome. Other milestones in the improvement of the cage designs followed, resulting in the production of different implant shapes and materials. The elastic modulus of the interbody implants approached by modern materials became more and more similar to bone, so that subsidence of cages reduced and the fusion rate could be further increased. The primary stability could be further increased with screw–rod systems, so that dorsal instrumentation became the standard in the context of PLIF and TLIF procedures today. The TLIF procedure described by Harms was a new modification and minimized complications of lumbar fusions and reduced the invasiveness of the procedure.

Conclusion

Nowadays a wide variety of implants and implantation techniques are available, making interbody fusions in PLIF and TLIF techniques safe and successful procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9.
Abb. 10
Abb. 11
Abb. 12
Abb. 13
Abb. 14

Literatur

  1. Albee FH (1911) Transplantation of a portion of the tibia into the spine for Pott’s disease. JAMA 57:885–886

    Article  Google Scholar 

  2. Bagby GW (1988) Arthrodesis by the distraction-compression method using a stainless steel implant. Orthopedics 11:931–934

    CAS  PubMed  Google Scholar 

  3. Bagby G (1999) The Bagby and Kuslich (BAK) method of lumbar interbody fusion. Spine 24:1857

    Article  CAS  PubMed  Google Scholar 

  4. Barnes B, Rodts GE Jr, Haid RW Jr et al (2002) Allograft implants for posterior lumbar interbody fusion: results comparing cylindrical dowels and impacted wedges. Neurosurgery 51:1191–1198 (discussion 8)

    Article  PubMed  Google Scholar 

  5. Blume H, Rojas CH (1981) Unilateral lumbar interbody fusion (posterior approach) utilizing dowel graft. J Neurol Orthop Surg 2:171–175

    Google Scholar 

  6. Bosworth DM (1942) Clothespine or inclusion graft for spondylolisthesis or laminal defects of the lumbar spine. Surg Gynecol Obstet 75:593–599

  7. Brantigan JW, Steffee AD (1993) A carbon fiber implant to aid interbody lumbar fusion. Two-year clinical results in the first 26 patients. Spine (Phila Pa 1976) 18(14):2106–2107

    Article  CAS  Google Scholar 

  8. Brantigan JW, Steffee AD, Geiger JM (1991) A carbon fiber implant to aid interbody lumbar fusion. Mechanical testing. Spine 16:S277–S282

    Article  CAS  PubMed  Google Scholar 

  9. Brantigan JW, McAfee PC, Cunningham BW, Wang H, Orbegoso CM (1994) Interbody lumbar fusion using acarbon fiber cage implant versus allograft: an investigational study in thespanish goat. Spine 19:1436–1444

    Article  CAS  PubMed  Google Scholar 

  10. Brantigan JW, Neidre A, Toohey JS (2004) The Lumbar I/F Cage for posterior lumbar interbody fusion with the variable screw placement system: 10-year results of a food and drug administration clinical trial. Spine J 4(6):681–688

    Article  PubMed  Google Scholar 

  11. Briggs H, Milligan P (1944) Chip fusion of the low back following exploration of the spinal canal. J Bone Joint Surg 26:125–130

    Google Scholar 

  12. Brodke DS, Dick JC, Kunz DN et al (1997) Posterior lumbar interbody fusion. A biomechanical comparison, including a new threaded cage. Spine 22:26–31

    Article  CAS  PubMed  Google Scholar 

  13. Butts M, Kuslick S, Bechtold J (1987) Biomechanical analysis of a new method for spinal interbody fusion. American Society of Mechanical Engineers, Boston

  14. Campbell WC (1939) An operation for extra-articular fusion of sacroiliac joint. Surg Gynecol Obstet 45:218–219

    Google Scholar 

  15. Cloward RB (1952) The treatment of ruptured lumbar intervertebral disc by vertebral body fusion. III. Method of use of banked bone. Ann Surg 136(6):987–992

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Cloward RB (1953) The treatment of ruptured lumbar intervertebral discs by vertebral body fusion. I. Indications, operative technique, after care. J Neurosurg 10:154–168

    Article  CAS  PubMed  Google Scholar 

  17. Cloward RB (1985) Posterior lumbar interbody fusion updated. Clin Orthop Relat Res 193:16–19

    PubMed  Google Scholar 

  18. Davis H (1994) Increasing rates of cervical and lumbar spine surgery in the United States, 1979–1990. Spine 19:1117–1123 (discussion 23–4)

    Article  CAS  PubMed  Google Scholar 

  19. Dick W, Kluger P, Magerl F, Woersdörfer O, Zäch G (1985) A new device for internal fixation of thoracolumbar and lumbar spine fractures: the ‚fixateur interne‘. Paraplegia 23(4):225–232

    Article  CAS  PubMed  Google Scholar 

  20. El-Masry MA, Khayal H, Salah H (2008) Unilateral transforaminal lumbar interbody fusion (TLIF) using a single cage for treatment of low grade lytic spondylolisthesis. Acta Orthop Belg 74(5):667–671

    PubMed  Google Scholar 

  21. Foley KT, Holly LT, Schwender JD (2003) Minimally invasive lumbar fusion. Spine 15(suppl):26–35

    Google Scholar 

  22. Freeman BJ, Licina P, Mehdian SH (2000) Posterior lumbar interbody fusion combined with instrumented postero-lateral fusion: 5-year results in 60 patients. Eur Spine J 9:42–46

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Gelalis ID, Kang JD (1998) Thoracic and lumbar fusions for degenerative disorders: rationale for selecting the appropriate fusion techniques. Orthop Clin North Am 29(4):829–842

    Article  CAS  PubMed  Google Scholar 

  24. Ghormley RK (1933) Low back pain, with special reference to the articular facets, with presentation of an operative procedure. JAMA 101:1773–1777

    Article  Google Scholar 

  25. Grant BD, Hoskinson JJ, Barbee DD, Gavin PR, Sande RD, Bayly WM (1985) Ventral stabilization for decompression of caudal cervical spine cord compression in the horse. Read at the Annual Convention of the American Association of Equine Practitioners, Toronto, Ontario, Canada, 30:1985

  26. Hadra BE (1975) The classic: wiring of the vertebrae as a means of immobilization in fracture and Potts' disease. Berthold E. Hadra. Med Times and Register, Vol22, May 23, 1891. Clin Orthop Relat Res 112:4–8

  27. Harms JG, Jeszenszky D (1998) Die posteriore, lumbale, interkorporelle Fusion in unilateraler transforaminaler Technik. Orthop Traumatol 10:90–102

    Article  CAS  Google Scholar 

  28. Harms J, Tabasso G (1999) Instrumented spinal surgery: principles and technique. Thieme, Stuttgart, S 20

    Google Scholar 

  29. Harms J, Behle BA, Böhm H et al (1996) Lumbosacral fusion with Harms instrumentation. In: Margulies JY, Floman Y, Farcy JPC, Neuwirth MG. Lumbosacral and spinopelvic fixation. Lippincott-Raven, Philadelphia, S 529–538

    Google Scholar 

  30. Harrington PR (1962) Treatment of scoliosis. Correction and internal fixation by spine instrumentation. J Bone Joint Surg Am Am 44:591–610

  31. Harrington PR (1967) Instrumentation in spine instability other than scoliosis. S Afr J Surg 5:7–13

    CAS  PubMed  Google Scholar 

  32. Hibbs RA (1911) An operation for progressive spinal deformities. New York Med J 93:1013–1016

    Google Scholar 

  33. Humphreys SC, Hodges SD, Patwardhan AG et al (2001) Comparison of posterior and transforaminal approaches to lumbar interbody fusion. Spine 26:567–571

    Article  CAS  PubMed  Google Scholar 

  34. Jang J, Lee S (2005) Minimally invasive transforaminal lumbar interbody fusion with ipsilateral pedicle screw and contralateral facet screw fixation. J Neurosurg Spine 3(3):218–223

    Article  PubMed  Google Scholar 

  35. Jaslow IA (1946) Intercorporal bone graft in spinal fusion after disc removal. Surg Gynecol Obstet 82:215–218

    CAS  PubMed  Google Scholar 

  36. Kandziora F (2003) Habilitationsschrift. Einfluss von Cagedesign, Carrier-Systemen und Wachstumsfaktoren auf die intervertebrale Spondylodese. Berlin 2003. http://edoc.hu-berlin.de/habilitationen/kandziora-frank-2003-10-23

  37. King D (1948) Internal fixation for lumbosacral fusion. J Bone Joint Surg [Am] 30:560–565

    Google Scholar 

  38. Kuslich SD, Ulstrom CL, Griffith SL, Ahern JW, Dowdle JD (1998) The Bagby and Kuslich method of lumbar interbody fusion. History, techniques, and 2-year follow-up results of a United States prospective, multicenter trial. Spine (Phila Pa 1976) 23(11):1267–1278

    Article  CAS  Google Scholar 

  39. Magerl FP (1984) Stabilization of the lower thoracic and lumbar spine with external skeletal fixation. Clin Orthop Relat Res 189:125–141

  40. McKenzie-Forbes A (1922) The operative treatment of scoliosis. J Bone Joint Surg Am 4:446–452

    Google Scholar 

  41. Mixter WJ, Barr JS (1934) Rupture of the intervertebral disc with involvement of the spinal canal. N Engl J Med 211:210–225

    Article  Google Scholar 

  42. O'Brien JP, Dawson MH, Heard CW, Momberger G, Speck G, Weatherly CR (1986) Simultaneous combined anterior and posterior fusion. A surgical solution for failed spinal surgery with a brief review of the first 150 patients. Clin Orthop Relat Res 203:191–195

    Google Scholar 

  43. Peng CW, Yue WM, Poh SY, Yeo W, Tan SB (2009) Clinical and radiological outcomes of minimally invasive versus open transforaminal lumbar interbody fusion. Spine (Phila Pa 1976) 34(13):1385–1389

    Article  Google Scholar 

  44. Ray CD (1997) Threaded titanium cages for lumbar interbody fusions. Spine 22:667–679

    Article  CAS  PubMed  Google Scholar 

  45. Rhee JM, Wiesel SW, Boden SD, Flynn JM (2013) Operative techniques in spine surgery. Wolters Kluwer, S 184

  46. Resnick DK, Choudhri TF, Dailey AT et al (2005) Guidelines for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 8: lumbar fusion for disc herniation and radiculopathy. J Neurosurg Spine 2:673–678

    Article  PubMed  Google Scholar 

  47. Roy-Camille R, Roy-Camille M, Demeulenaere C (1970) Osteosynthesis of dorsal, lumbar, and lumbosacral spine with metallic plates screwed into vertebral pedicles and articular apophyses. Presse Med 78(32):1447–1448

    CAS  PubMed  Google Scholar 

  48. Schwender JD, Holly LT, Rouben DP, Foley KT (2005) Minimally invasive transforaminal lumbar interbody fusion (TLIF): technical feasibility and initial results. J Spinal Disord Tech 18(Suppl):S1–S6

    Google Scholar 

  49. Steffee AD, Sitkowski DJ (1988) Posterior lumbar interbody fusion and plates. Clin Orthop Relat Res 227:99–102

    CAS  PubMed  Google Scholar 

  50. Steffen T, Tsantrizos A, Fruth I, Aebi M (2000) Cages: designs and concepts. Eur Spine J 9(Suppl. 1):S89–S94

    Google Scholar 

  51. Tajima N, Chosa E, Watanabe S  (2004) Posterolateral lumbar fusion. J Orthop Sci 9:327–333

    Article  PubMed  Google Scholar 

  52. Taneichi H, Suda K, KajinoT, Matsumura A, Moridaira H, Kaneda K (2006) Unilateral transforaminal lumbar interbody fusion and bilateral anterior-column fixation with two Brantigan I/F cages per level: clinical outcomes during a minimum 2-yearfollow-up period. J Neurosurg Spine 4(3):198–205

  53. Wang JC, Mummaneni PV, Haid RW (2005) Current treatment strategies for the painful lumbar motion segment: posterolateral fusion versus interbody fusion. Spine 30:S33–S43

    Article  PubMed  Google Scholar 

  54. Watkins MB (1953) Posterolateral fusion of the lumbar and lumbosacral spine. J Bone Joint Surg Am 35-A(4):1014–1018

    CAS  PubMed  Google Scholar 

  55. Watkins MB (1959) Posterolateral bonegrafting for fusion of the lumbar and lumbosacral spine. J Bone Joint Surg Am 41-A(3):388–396

    CAS  PubMed  Google Scholar 

  56. Weiner BK, Fraser RD (1998) Spine update lumbar interbody cages. Spine (Phila Pa 1976) 23(5):634–640

    Article  CAS  Google Scholar 

  57. Wiltse LL, Bateman JG, Hutchinson RH, Nelson WE (1968) The paraspinal sacrospinalis-splitting approach to the lumbar spine. J Bone Joint Surg Am 50:919–926

    CAS  PubMed  Google Scholar 

  58. Wolff J (1986) The law of bone remodelling (trans: Maquet P, Furlong R). Springer, Berlin

    Book  Google Scholar 

  59. Zhou J, Wang B, Dong J, Li X, Zhou X, Fang T, Lin H (2011) Instrumented transforaminal lumbar interbody fusion with single cage for the treatment of degenerative lumbar disease. Arch Orthop Trauma Surg 131(9):1239–1245

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Rickert.

Ethics declarations

Interessenkonflikt

J. Harms ist der Entwickler des im Text benannten Harms Cage. M. Rickert, M. Rauschmann, C. Fleege, E. Behrbalk und J. Harms geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag enthält keine Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rickert, M., Rauschmann, M., Fleege, C. et al. Interkorporelle Fusionsverfahren an der Wirbelsäule. Orthopäde 44, 104–113 (2015). https://doi.org/10.1007/s00132-015-3076-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-015-3076-1

Schlüsselwörter

Keywords

Navigation