Skip to main content
Log in

Defektmodelle für die Gelenkknorpelregeneration im Großtier

Defect models for the regeneration of articular cartilage in large animals

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Für präklinische Studien zu Knorpelreparaturmechanismen bestehen mehrere Großtiermodelle. Schaf, Schwein, Ziege, Hund und Pferd können aufgrund der Größenverhältnisse des Kniegelenks zu Studien der Knorpelregeneration herangezogen werden.

Material und Methoden

Hierbei können die gängigen Untersuchungsmethoden angewendet werden. Die subchondrale Lamelle wird berücksichtigt, um die Ergebnisse der Regeneration mit einer ACT oder MACT nicht durch eingewanderte Zellen aus dem Markraum zu verfälschen, obwohl die Rekrutierung von Zellen in der humanen Knorpelregeneration oft erwünscht ist. Die Defekte werden meist an den Kondylen sowie an der Trochlea, häufig bilateral, gesetzt. Dabei wird darauf geachtet, dass aufgrund der gewählten Defektgröße keine Spontanheilung auftreten kann. Die Zeiträume für eine Beurteilung der Effizienz der Knorpelregeneration liegen zwischen 6 und 12 Monaten. Für Pilotstudien werden kürzere Standzeiten bis zu 12 Wochen beschrieben. Als Auswerteverfahren dienen verschiedene Scores, die eine Histologie, Immunhistologie und die biochemische Untersuchung des Reparaturgewebes einschließen. Biomechanische Tests des Gewebes stehen am Ende der Versuche, wobei mit dem Einsatz von Schnittbildverfahren, wie dem MRT, der Verlauf einer Regeneration zusätzlich in vivo beurteilt werden kann.

Schlussfolgerung

Schritte zur Standardisierung von Großtiermodellen für die Beurteilung von regenerativen Therapieansätzen existieren kaum, sind aber aus Sicht der Zulassung neuer Ansätze und v. a. aus der Sicht des Tierschutzes anzustreben.

Abstract

Background

Several animal models are available for the analysis of regeneration of articular cartilage in large animals, such as sheep, pigs, goats, dogs and horses. The subchondral bone lamella must be considered when ACT and MACT techniques are examined in order to protect the implant against migration of cells from the bone marrow, although recruitment of cells is often desirable in the regeneration of human cartilage.

Material and methods

The defects are mainly positioned at the condyles and the trochlea often bilaterally and spontaneous healing should be excluded. The follow-up period for assessment of the effectiveness of cartilage regeneration is 6–12 months. Shorter observation times up to 12 weeks can be used for pilot studies. Scores based on histological, immunohistological and biochemical staining are mostly used for assessing the regenerated tissue. Biomechanical tests with destructive features need isolated specimens from the animal but modern slice imaging techniques can reflect the progression of the healing processes over the time span of the study in vivo.

Conclusion

Approaches to standardize the evaluation of the regeneration of articular cartilage have been sporadically described whereas they are required from the point of view of the approval of new concepts for therapy and the protection of animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. (o A) (2006) Tierschutzgesetz in der Fassung der Bekanntmachung vom 18. Mai 2006 (BGBl. I S. 1206, 1313). S 1206–1313

  2. Administration UFaD (2007) Guidance for industry preparation of IDEs and INDs for products intended to repair or replace knee cartilage. In: Office of Communication OaDO (Hrsg) US Food and Drug Administration, 1404 Rockville Pike

  3. Ahern BJ, Parvizi J, Boston R, Schaer TP (2009) Preclinical animal models in single site cartilage defect testing: a systematic review. Osteoarthritis Cartilage 17:705–713

    Article  PubMed  CAS  Google Scholar 

  4. Ando W, Tateishi K, Hart DA et al (2007) Cartilage repair using an in vitro generated scaffold-free tissue-engineered construct derived from porcine synovial mesenchymal stem cells. Biomaterials 28:5462–5470

    Article  PubMed  CAS  Google Scholar 

  5. ASTM (2005) Standard guide for in vivo assessment of implantatble devices intended to repair or regenerate articular cartilage. ASTM international

  6. Barnewitz D, Endres M, Krüger I et al (2006) Treatment of articular cartilage defects in horses with polymer-based cartilage tissue engineering grafts. Biomaterials 27:2882–2889

    Article  PubMed  CAS  Google Scholar 

  7. Blanke M, Carl HD, Klinger P et al (2009) Transplanted chondrocytes inhibit endochondral ossification within cartilage repair tissue. Calcif Tissue Int 85:421–433

    Article  PubMed  CAS  Google Scholar 

  8. Brehm W, Aklin B, Yamashita T et al (2006) Repair of superficial osteochondral defects with an autologous scaffold-free cartilage construct in a caprine model: implantation method and short-term results. Osteoarthritis Cartilage 14:1214–1226

    Article  PubMed  CAS  Google Scholar 

  9. Breinan HA, Martin SD, Hsu H-P, Spector M (2000) Healing of canine articular cartilage defects treated with microfracture, a type-II collagen matrix, or cultured autologous chondrocytes. J Orthop Res 18:781–789

    Article  PubMed  CAS  Google Scholar 

  10. Breinan HA, Minas TOM, Hsu H-P et al (1997) Effect of cultured autologous chondrocytes on repair of chondral defects in a canine model. J Bone Joint Surg Am 79:1439–1451

    PubMed  CAS  Google Scholar 

  11. Brown WE, Potter HG, Marx RG et al (2004) Magnetic resonance imaging appearance of cartilage repair in the knee. Clin Orthop Relat Res 422:214–223

    Article  PubMed  Google Scholar 

  12. Burks RT, Greis PE, Arnoczky SP, Scher C (2006) The use of a single osteochondral autograft plug in the treatment of a large osteochondral lesion in the femoral condyle. Am J Sports Med 34:247–255

    Article  PubMed  Google Scholar 

  13. Chevrier A, Hoemann CD, Sun J, Buschmann MD (2007) Chitosan glycerol phosphate/blood implants increase cell recruitment, transient vascularization and subchondral bone remodeling in drilled cartilage defects. Osteoarthritis Cartilage 15:316–327

    Article  PubMed  CAS  Google Scholar 

  14. Chevrier A, Hoemann CD, Sun J, Buschmann MD (2011) Temporal and spatial modulation of chondrogenic foci in subchondral microdrill holes by chitosan-glycerol phosphate/blood implants. Osteoarthritis Cartilage 19:136–144

    Article  PubMed  CAS  Google Scholar 

  15. Chiang H, Kuo T-F, Tsai C-C et al (2005) Repair of porcine articular cartilage defect with autologous chondrocyte transplantation. J Orthop Res 23:584–593

    Article  PubMed  Google Scholar 

  16. Chu CR, Szczodry M, Bruno S (2010) Animal models for cartilage regeneration and repair. Tissue Eng Part B Rev 16:105–115

    Article  PubMed  Google Scholar 

  17. Cook SD, Patron LP, Salkeld SL, Rueger DC (2003) Repair of articular cartilage defects with osteogenic protein-1 (bmp-7) in dogs. J Bone Joint Surg Am 85:116–123

    PubMed  Google Scholar 

  18. Custers RJH, Saris DBF, Dhert WJA et al (2009) Articular cartilage degeneration following the treatment of focal cartilage defects with ceramic metal implants and compared with microfracture. J Bone Joint Surg Am 91:900–910

    Article  PubMed  CAS  Google Scholar 

  19. Dell’Accio F, Vanlauwe J, Bellemans J et al (2003) Expanded phenotypically stable chondrocytes persist in the repair tissue and contribute to cartilage matrix formation and structural integration in a goat model of autologous chondrocyte implantation. J Orthop Res 21:123–131

    Article  Google Scholar 

  20. Dorotka R, Windberger U, Macfelda K et al (2005) Repair of articular cartilage defects treated by microfracture and a three-dimensional collagen matrix. Biomaterials 26:3617–3629

    Article  PubMed  CAS  Google Scholar 

  21. Duda GN, Zully MM, Petra K et al (2005) On the influence of mechanical conditions in osteochondral defect healing. J Biomech 38:843–851

    Article  PubMed  Google Scholar 

  22. Ebihara G, Sato M, Yamato M et al (2012) Cartilage repair in transplanted scaffold-free chondrocyte sheets using a minipig model. Biomaterials 33:3846–3851

    Article  PubMed  CAS  Google Scholar 

  23. Efe T, Schofer M, Fuglein A et al (2010) An ex vivo continuous passive motion model in a porcine knee for assessing primary stability of cell-free collagen gel plugs. BMC Musculoskelet Disord 11:283

    Article  PubMed  Google Scholar 

  24. Efe T, Theisen C, Fuchs-Winkelmann S et al (2012) Cell-free collagen type I matrix for repair of cartilage defects – clinical and magnetic resonance imaging results. Knee Surg Sports Traumatol Arthrosc 20:1915–1922

    Article  PubMed  Google Scholar 

  25. EMA Ema (2010) Reflection paper on in-vitro cultured chondrocyte containing products for cartilage repair of the knee. In: EMA (Hrsg) European medicines agency, S 7

  26. Filová E, Rampichová M, Handl M et al (2007) Composite hyaluronate-type I collagen-fibrin scaffold in the therapy of osteochondral defects in miniature pigs. Physiol Res 56(Suppl 1):5–16

    Google Scholar 

  27. Fortier LA, Mohammed HO, Lust G, Nixon AJ (2002) Insulin-like growth factor-I enhances cell-based repair of articular cartilage. J Bone Joint Surg Br 84-B:276–288

    Google Scholar 

  28. Frisbie DD, Bowman SM, Colhoun HA et al (2008) Evaluation of autologous chondrocyte transplantation via a collagen membrane in equine articular defects – results at 12 and 18 months. Osteoarthritis Cartilage 16:667–679

    Article  PubMed  CAS  Google Scholar 

  29. Frisbie DD, Cross MW, McIlwraith CW (2006) A comparative study of articular cartilage thickness in the stifle of animal species used in human pre-clinical studies compared to articular cartilage thickness in the human knee. Vet Comp Orthop Traumatol 19:142–146

    PubMed  CAS  Google Scholar 

  30. Gille J, Kunow J, Boisch L et al (2010) Cell-laden and cell-free matrix-induced chondrogenesis versus microfracture for the treatment of articular defects: a histological and biomechanical study in sheep. Cartilage 1:29–42

    Article  Google Scholar 

  31. Goodrich L, Hidaka C, Robbins P et al (2007) Genetic modification of chondrocytes with insulin-like growth factor-1 enhances cartilage healing in an equine model. J Bone Joint Surg Br 89:672–685

    PubMed  CAS  Google Scholar 

  32. Gotterbarm T, Reitzel T, Schneider U et al (2003) Einwachsverhalten von periostgedeckten Knochendübeln mit und ohne autologe Knorpelzellen. Orthopäde 32:65–73

    Article  PubMed  CAS  Google Scholar 

  33. Gotterbarm T, Richter W, Jung M et al (2006) An in vivo study of a growth-factor enhanced, cell free, two-layered collagen-tricalcium phosphate in deep osteochondral defects. Biomaterials 27:3387–3395

    Article  PubMed  CAS  Google Scholar 

  34. Gotterbarm T, Breusch SJ, Schneider U, Jung M (2008) The minipig model for experimental chondral and osteochondral defect repair in tissue engineering: retrospective analysis of 180 defects. Lab Anim 42:71–82

    Article  PubMed  CAS  Google Scholar 

  35. Guo X, Wang C, Duan C et al (2004) Repair of osteochondral defects with autologous chondrocytes seeded onto bioceramic scaffold in sheep. Tissue Eng 10:1830–1840

    Article  PubMed  CAS  Google Scholar 

  36. Hembry RM, Dyce J, Driesang I (2001) Immunolocalization of matrix metalloproteinases in partial-thickness defects in pig articular cartilage: a preliminary report. J Bone Joint Surg Am 83:826–838

    PubMed  Google Scholar 

  37. Ho STB, Hutmacher DW, Ekaputra AK et al (2010) The evaluation of a biphasic osteochondral implant coupled with an electrospun membrane in a large animal model. Tissue Eng Part A 16:1123–1141

    Article  PubMed  CAS  Google Scholar 

  38. Hoemann C, Kandel R, Roberts S et al (2011) International Cartilage Repair Society (ICRS) recommended guidelines for histological endpoints for cartilage repair studies in animal models and clinical trials. Cartilage 2:153–172

    Article  CAS  Google Scholar 

  39. Hoemann CD, Hurtig M, Rossomacha E et al (2005) Chitosan-glycerol phosphate/blood implants improve hyaline cartilage repair in ovine microfracture defects. J Bone Joint Surg Am 87:2671–2686

    Article  PubMed  Google Scholar 

  40. Hunziker EB (2002) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage 10:432–463

    Article  PubMed  CAS  Google Scholar 

  41. Hunziker EB, Rosenberg LC (1996) Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. J Bone Joint Surg Am 78:721–733

    PubMed  CAS  Google Scholar 

  42. Hunziker EB, Stähli A (2008) Surgical suturing of articular cartilage induces osteoarthritis-like changes. Osteoarthritis Cartilage 16:1067–1073

    Article  PubMed  CAS  Google Scholar 

  43. Hurtig MB, Buschmann MD, Fortier LA et al (2011) Preclinical studies for cartilage repair: recommendations from the international cartilage repair society. Cartilage 2011:137–152

    Article  Google Scholar 

  44. Jackson DW, Halbrecht J, Proctor C et al (1996) Assessment of donor cell and matrix survival in fresh articular cartilage allografts in a goat model. J Orthop Res 14:255–264

    Article  PubMed  CAS  Google Scholar 

  45. Jackson DW, Lalor PA, Aberman HM, Simon TM (2001) Spontaneous repair of full-thickness defects of articular cartilage in a goat model: a preliminary study. J Bone Joint Surg Am 83:53–64

    Article  PubMed  Google Scholar 

  46. Jiang C-C, Chiang H, Liao C-J et al (2007) Repair of porcine articular cartilage defect with a biphasic osteochondral composite. J Orthop Res 25:1277–1290

    Article  PubMed  CAS  Google Scholar 

  47. Jones CW, Willers C, Keogh A et al (2008) Matrix-induced autologous chondrocyte implantation in sheep: objective assessments including confocal arthroscopy. J Orthop Res 26:292–303

    Article  PubMed  CAS  Google Scholar 

  48. Jubel A, Andermahr J, Schiffer G et al (2008) Transplantation of de novo scaffold-free cartilage implants into sheep knee chondral defects. Am J Sports Med 36:1555–1564

    Article  PubMed  Google Scholar 

  49. Jubel A, Fischer J, Andermahr J et al (2006) Die Implantation von matrixfreien dreidimensionalen Knorpeltransplantaten in standardisierte Knorpeldefekte am Schafskniegelenk. Orthopäde 35:1246–1257

    Article  PubMed  CAS  Google Scholar 

  50. Jung M, Kaszap B, Redöhl A (2009) Enhanced early tissue regeneration after matrix-assisted autologous mesenchymal stem cell transplantation in full thickness chondral defects in a minipig model. Cell Transplant 18:923–932

    Article  PubMed  Google Scholar 

  51. Jung M, Gotterbarm T, Gruettgen A et al (2005) Molecular characterization of spontaneous and growth-factor-augmented chondrogenesis in periosteum – bone tissue transferred into a joint. Histochem Cell Biol 123:447–456

    Article  PubMed  CAS  Google Scholar 

  52. Kangarlu A, Gahunia HK (2006) Magnetic resonance imaging characterization of osteochondral defect repair in a goat model at 8 T. Osteoarthritis Cartilage 14:52–62

    Article  PubMed  CAS  Google Scholar 

  53. Kleemann R (2006) Biomechanik und Mechanobiologie in der Regeneration osteochonraler Defekte im Kniegelenk. TU Berlin, Berlin

  54. Kon E, Delcogliano M, Filardo G et al (2009) Orderly osteochondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial. J Orthop Res 28:116–124

    Google Scholar 

  55. Kon E, Filardo G, Delcogliano M et al (2010) Platelet autologous growth factors decrease the osteochondral regeneration capability of a collagen-hydroxyapatite scaffold in a sheep model. BMC Musculoskelet Disord 11:220

    Article  PubMed  Google Scholar 

  56. Lane JG, Healey RM, Chen AC et al (2010) Can osteochondral grafting be augmented with microfracture in an extended-size lesion of articular cartilage? Am J Sports Med 38:1316–1323

    Article  PubMed  Google Scholar 

  57. Li W-J, Chiang H, Kuo T-F et al (2009) Evaluation of articular cartilage repair using biodegradable nanofibrous scaffolds in a swine model: a pilot study. J Tissue Eng Regen Med 3:1–10

    Article  PubMed  CAS  Google Scholar 

  58. Lind M, Larsen A (2008) Equal cartilage repair response between autologous chondrocytes in a collagen scaffold and minced cartilage under a collagen scaffold: an in vivo study in goats. Connect Tissue Res 49:437–442

    Article  PubMed  CAS  Google Scholar 

  59. Lind M, Larsen A, Clausen C et al (2008) Cartilage repair with chondrocytes in fibrin hydrogel and MPEG polylactide scaffold: an in vivo study in goats. Knee Surg Sports Traumatol Arthrosc 16:690–698

    Article  PubMed  Google Scholar 

  60. Litzke LF, Wagner E, Baumgaertner W et al (2004) Repair of extensive articular cartilage defects in horses by autologous chondrocyte transplantation. Ann Biomed Eng 32:57–69

    Article  PubMed  CAS  Google Scholar 

  61. Liu Y, Chen F, Liu W et al (2002) Repairing large porcine full-thickness defects of articular cartilage using autologous chondrocyte-engineered cartilage. Tissue Eng 8:709–721

    Article  PubMed  CAS  Google Scholar 

  62. Mainil-Varlet P, Aigner T, Brittberg M et al (2003) Histological assessment of cartilage repair: a report by the Histology Endpoint Committee of the International Cartilage Repair Society (ICRS). J Bone Joint Surg Am 85-A:45–57

    Google Scholar 

  63. Marlovits S, Aldrian S, Wondrasch B et al (2012) Clinical and radiological outcomes 5 years after matrix-induced autologous chondrocyte implantation in patients with symptomatic, traumatic chondral defects. Am J Sports Med 40:2273–2280

    Article  PubMed  Google Scholar 

  64. Miot S, Brehm W, Dickinson S et al (2012) Influence of in vitro maturation of engineered cartilage on the outcome of osteochondral repair in a goat model. Eur Cell Mater 23:222–236

    PubMed  CAS  Google Scholar 

  65. Moradi B, Schönit E, Nierhoff C et al (2012) First-generation autologous chondrocyte implantation in patients with cartilage defects of the knee: 7 to 14 years‘ clinical and magnetic resonance imaging follow-up evaluation. Arthroscopy 28:1851–1861

    Article  PubMed  Google Scholar 

  66. Muehleman C, Li J, Abe Y et al (2009) Effect of risedronate in a minipig cartilage defect model with allograft. J Orthop Res 27:360–365

    Article  PubMed  Google Scholar 

  67. Nehrer S, Breinan HA, Ramappa A et al (1998) Chondrocyte-seeded collagen matrices implanted in a chondral defect in a canine model. Biomaterials 19:2313–2328

    Article  PubMed  CAS  Google Scholar 

  68. O’Driscoll SW, Keeley F, Salter RB (1988) Durability of regenerated articular cartilage produced by free autogenous periosteal grafts in major full-thickness defects in joint surfaces under the influence of continuous passive motion. A follow-up report at one year. J Bone Joint Surg Am 70:595–606

    Google Scholar 

  69. Petersen J, Ueblacker P, Goepfert C et al (2008) Long term results after implantation of tissue engineered cartilage for the treatment of osteochondral lesions in a minipig model. J Mater Sci Mater Med 19:2029–2038

    Article  PubMed  CAS  Google Scholar 

  70. Pineda S, Ppllack A, Stevenson S et al (1992) A semiquantitative scale for histologic grading of articular cartilage repair. Acta Anat (Basel) 143:335–340

    Google Scholar 

  71. Räsänen T, Messner K (1996) Regional variations of indentation stiffness and thickness of normal rabbit knee articular cartilage. J Biomed Mater Res 31:519–524

    Article  PubMed  Google Scholar 

  72. Redman SN, Oldfield SF, Archer CW (2005) Current strategies for articular cartilage repair. Eur Cell Mater 9:23–32

    PubMed  CAS  Google Scholar 

  73. Richter W, Diederichs S (2009) Regenerative Medizin in der Orthopädie. Orthopäde 38:859–869

    Article  PubMed  CAS  Google Scholar 

  74. Russlies M, Behrens P, Ehlers E-M et al (2005) Periosteum stimulates subchondral bone densification in autologous chondrocyte transplantation in a sheep model. Cell Tissue Res 319:133–142

    Article  PubMed  Google Scholar 

  75. Russlies M, Rüther P, Köller W et al (2003) Biomechanische Eigenschaften von Knorpelersatzgewebe nach verschiedenen Methoden der Knorpeldefektbehandlung beim Schaf. Z Orthop Ihre Grenzgeb 141:465–471

    Article  PubMed  CAS  Google Scholar 

  76. Schagemann JC, Erggelet C, Chung H-W et al (2009) Cell-laden and cell-free biopolymer hydrogel for the treatment of osteochondral defects in a sheep model. Tissue Eng Part A 15(1):75–82

    Article  PubMed  CAS  Google Scholar 

  77. Schinhan M, Gruber M, Vavken P et al (2012) Critical-size defect induces unicompartmental osteoarthritis in a stable ovine knee. J Orthop Res 30:214–220

    Article  PubMed  Google Scholar 

  78. Schlichting K, Schell H, Kleemann RU et al (2008) Influence of scaffold stiffness on subchondral bone and subsequent cartilage regeneration in an ovine model of osteochondral defect healing. Am J Sports Med 36:2379–2391

    Article  PubMed  Google Scholar 

  79. Schneider U, Schmidt-Rohlfing B, Gavenis K et al (2011) A comparative study of 3 different cartilage repair techniques. Knee Surg Sports Traumatol Arthrosc 1–8

  80. Schrimpf F (2004) Beeinflussung der Gelenkknorpelregeneration beim Schaf durch den Einsatz resorbierbarer Implantate. Dissertation

  81. Schrödl S (2005) Erprobung eines bio-resorbierbaren Bioimplantates zum Knorpelersatz im Schafsfemur. In: Orthopädische Klinik der LMU. Ludwigs-Maximilians-Universität München, München, S 91

  82. Schwarz MLR, Schneider-Wald B, Krase A et al (2012) Tribologische Messungen am Gelenkknorpel. Orthopäde 41:827–836

    Article  PubMed  CAS  Google Scholar 

  83. Siebert C, Schneider U, Sopka S et al (2006) Ingrowth of osteochondral grafts under the influence of growth factors: 6-month results of an animal study. Arch Orthop Trauma Surg 126:247–252

    Article  PubMed  Google Scholar 

  84. Simon TM, Aberman H (2010) Cartilage regeneration and repair testing in a surrogate large animal model. Tissue Eng Part B Rev 16:65–79

    Article  PubMed  CAS  Google Scholar 

  85. Steck E, Fischer J, Lorenz H, Gotterbarm T, Jung M, Richter W (2009) Mesenchymal stem cell differentiation in an experimental cartilage defect: restriction of hypertrophy to bone-close neocartilage. Stem Cells Dev 18(7):969–978

    Article  PubMed  CAS  Google Scholar 

  86. Streitparth F, Schöttle P, Schlichting K et al (2009) Osteochondral defect repair after implantation of biodegradable scaffolds: indirect magnetic resonance arthrography and histopathologic correlation. Acta Radiol 50:765–774

    Article  PubMed  CAS  Google Scholar 

  87. Vasara AI, Hyttinen MM, Lammi MJ et al (2003) Subchondral bone reaction associated with chondral defect and attempted cartilage repair in goats. Calcif Tissue Int 74:107–114

    Article  PubMed  Google Scholar 

  88. Wakitani S, Goto T, Pineda SJ, Young RG et al (1994) Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am 76:579–592

    PubMed  CAS  Google Scholar 

  89. Watanabe A, Boesch C, Anderson SE et al (2009) Ability of dGEMRIC and T2 mapping to evaluate cartilage repair after microfracture: a goat study. Osteoarthritis Cartilage 17:1341–1349

    Article  PubMed  CAS  Google Scholar 

  90. Wegener B, Schrimpf FM, Pietschmann MF et al (2009) Matrix-guided cartilage regeneration in chondral defects. Biotechnol Appl Biochem 53:63–70

    Article  PubMed  CAS  Google Scholar 

  91. Welch RD, Berry BH, Crawford K et al (2002) Subchondral defects in caprine femora augmented with in situ setting hydroxyapatite cement, polymethylmethacrylate, or autogenous bone graft: biomechanical and histomorphological analysis after two-years. J Orthop Res 20:464–472

    Article  PubMed  CAS  Google Scholar 

  92. Heir S, Arøen A, Løken S et al (2010) Intraarticular location predicts cartilage filling and subchondral bone changes in a chondral defect. Acta Orthop 81(5):619–27

    Article  PubMed  Google Scholar 

  93. Brittberg M, Nilsson A, Lindahl A et al (1996) Rabbit articular cartilage defects treated with autologous cultured chondrocytes. Clin Orthop Relat Res 326:270–83

    Article  PubMed  Google Scholar 

Download references

Danksagung

Die Autoren bedanken sich beim BMBF für die Unterstützung im Rahmen des Projekts „Funktionelle Qualitätssicherung von regenerativen Gewebeersatzmaterialien für Knorpel und Meniskus (Qu-Re-Ge)“, Förderkennzeichen 0315577G und 0315577C.

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. Schneider-Wald or M.L.R. Schwarz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider-Wald, B., von Thaden, A. & Schwarz, M. Defektmodelle für die Gelenkknorpelregeneration im Großtier. Orthopäde 42, 242–253 (2013). https://doi.org/10.1007/s00132-012-2044-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-012-2044-2

Schlüsselwörter

Keywords

Navigation