Skip to main content

Advertisement

Log in

Interaktion zwischen humanen Chondrozyten und extrazellulärer Matrix in vitro

Ein Beitrag zur autologen Chondrozytentransplantation

Interaction between human chondrocytes and extracellular matrix in vitro

A contribution to autologous chondrocyte transplantation

  • Originalien
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die autologe Chondrozytentransplantation (ACT) hat als Therapiemethode bei kleineren Knorpeldefekten Erfolge gezeigt. Die Vermehrung der Chondrozyten für ACT gelingt nur in vitro und diese führt zur Dedifferenzierung der Zellen. Ziel dieser Arbeit war, die Züchtung von Chondrozyten zu optimieren und eine Dedifferenzierung der Zellen zu verhindern.

Material und Methode

Die humanen Chondrozyten wurden auf mit und ohne Typ-II-Kollagen beschichteten Oberflächen kultiviert. Die Zellen wurden morphologisch und mittels „Immunoblotting“ untersucht.

Ergebnisse

Auf Typ-II-Kollagen bleibt der chondrogene Phänotyp bis zum 20. Tag stabil und es werden mehr aktivierte intrazelluläre Proteine sowie das Adaptorprotein Shc (sarc homology collagen) nachgewiesen. Behandlung mit β1-Integrin-Antikörpern führte zu einer deutliche Abnahme (82%) der Zell-Adhäsion. Typ-II-Kollagen und Chondrozyteninteraktion führte zur Aktivierung der Integrine, die über das Shc-Protein den Ras-MAPK-Signalübertragungsweg aktivieren, welcher den chondrogenen Phänotyp stabilisiert.

Schlussfolgerung

Diese Kenntnisse könnten langfristig die In-vitro-Vermehrung autologer Chondrozyten verbessern und dem Einsatz dieser Technik bei größeren oder sogar arthrotischen Knorpeldefekten mehr Aussicht geben.

Abstract

Background

Autologous chondrocyte transplantation (ACT) has had reasonable success for repairing small articular cartilage defects. A limiting factor for ACT is, however, the in vitro cultivation of chondrocytes because it leads to dedifferentiation. Therefore, the goal of this work was to optimize the monolayer culture of chondrocytes in vitro.

Material and method

Human articular chondrocytes were plated on either collagen type II or untreated surfaces. The cells were evaluated morphologically and with immunoblotting.

Results

On collagen type II surfaces, a stable chondrogenic phenotype, expression of β1-integrin, and a significant activation of phosphorylated intracellular proteins and the adaptor protein Shc could be observed up to day 20 in culture. Treatment with β1 integrin antibody led to a loss of cell adhesion (82%). The results indicate that on collagen type II, β1-integrin receptors are activated. Through the activation of Shc, these stimulate the Ras-MAPK pathway, which stabilizes the chondrogenic phenotype.

Conclusion

Our results provide a practical and low-cost solution for improved long-term chondrocyte cultivation, thus providing a new perspective for using ACT on larger or arthrotic cartilage defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9

Literatur

  1. Benya PD, Shaffer JD (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30: 215–224

    Article  PubMed  CAS  Google Scholar 

  2. Brittberg M, Lindahl A, Nilsson A et al. (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331: 889–895

    Article  PubMed  CAS  Google Scholar 

  3. Brittberg M, Peterson L, Sjogren-Jansson E et al. (2003) Articular cartilage engineering with autologous chondrocyte transplantation. A review of recent developments. J Bone Joint Surg Am 85(Suppl 3): 109–115

    PubMed  Google Scholar 

  4. Brittberg M, Tallheden T, Sjogren-Jansson B et al. (2001) Autologous chondrocytes used for articular cartilage repair: an update. Clin Orthop 391(Suppl): 337–348

    Article  Google Scholar 

  5. Bryan J (1968) Studies on clonal cartilage strains. I. Effect of contaminant non-cartilage cells. Exp Cell Res 52: 319–326

    Article  PubMed  CAS  Google Scholar 

  6. Burton-Wurster N, Horn VJ, Lust G (1988) Immunohistochemical localization of fibronectin and chondronectin in canine articular cartilage. J Histochem Cytochem 36: 581–588

    PubMed  CAS  Google Scholar 

  7. Durr J, Goodman S, Potocnik A et al. (1993) Localization of beta 1-integrins in human cartilage and their role in chondrocyte adhesion to collagen and fibronectin. Exp Cell Res 207: 235–244

    Article  PubMed  CAS  Google Scholar 

  8. Enomoto M, Leboy PS, Menko AS, Boettiger D (1993) Beta 1 integrins mediate chondrocyte interaction with type I collagen, type II collagen, and fibronectin. Exp Cell Res 205: 276–285

    Article  PubMed  CAS  Google Scholar 

  9. Gerstenfeld LC, Landis WJ (1991) Gene expression and extracellular matrix ultrastructure of a mineralizing chondrocyte cell culture system. J Cell Biol 112: 501–513

    Article  PubMed  CAS  Google Scholar 

  10. Grundmann K, Zimmermann B, Barrach HJ, Merker HJ (1980) Behaviour of epiphyseal mouse chondrocyte populations in monolayer culture. Morphological and immunohistochemical studies. Virchows Arch 389: 167–187

    Article  CAS  Google Scholar 

  11. Hynes RO (1987) Integrins: a family of cell surface receptors. Cell 48: 549–554

    Article  PubMed  CAS  Google Scholar 

  12. Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69: 11–25

    Article  PubMed  CAS  Google Scholar 

  13. Kosher RA, Church RL (1975) Stimulation of in vitro somite chondrogenesis by procollagen and collagen. Nature 258: 327–330

    Article  PubMed  CAS  Google Scholar 

  14. Kosher RA, Lash JW, Minor RR (1973) Environmental enhancement of in vitro chondrogenesis. IV. Stimulation of somite chondrogenesis by exogenous chondromucoprotein. Dev Biol 35: 210–220

    Article  PubMed  CAS  Google Scholar 

  15. Mendler M, Eich-Bender SG, Vaughan L et al. (1989) Cartilage contains mixed fibrils of collagen types II, IX, and XI. J Cell Biol 108: 191–197

    Article  PubMed  CAS  Google Scholar 

  16. Merker HJ, Gunther T, Kruger U (1978) Effect of 4-methylumbelliferyl-beta-D-xylopyranoside on the morphology of embryonic cartilage in limb bud cultures. Teratology 18: 291–310

    Article  PubMed  CAS  Google Scholar 

  17. Norby DP, Malemud CJ, Sokoloff L (1977) Differences in the collagen types synthesized by lapine articular chondrocytes in spinner and monolayer culture. Arthritis Rheum 20: 709–716

    Article  PubMed  CAS  Google Scholar 

  18. Oakes BW (2004) Orthopaedic tissue engineering: from laboratory to the clinic. Med J Aust 180(Suppl 5): 35–38

    Google Scholar 

  19. Peterson L, Menche D, Grande D (1984) Chondrocyte transplantation – an experimental model in the rabbit. Transactions from the 30th Annual Orthopedic Research Society. Trans Orthop Res Soc 9: 218

    Google Scholar 

  20. Peterson L, Minas T, Brittberg M et al. (2000) Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop 374: 212–234

    Article  PubMed  Google Scholar 

  21. Ruoslahti E (1991) Integrins. J Clin Invest 87: 1–5

    Article  PubMed  CAS  Google Scholar 

  22. Schulze-Tanzil G, Souza P de, Villegas Castrejon H et al. (2002) Redifferentiation of dedifferentiated human chondrocytes in high-density cultures. Cell Tissue Res 308: 371–379

    Article  PubMed  CAS  Google Scholar 

  23. Schulze-Tanzil G, Mobasheri A, Souza P de et al. (2004) Loss of chondrogenic potential in dedifferentiated chondrocytes correlates with deficient Shc-Erk interaction and apoptosis. Osteoarthritis Cartilage 12: 448–458

    Article  PubMed  Google Scholar 

  24. Shakibaei M (1998) Inhibition of chondrogenesis by integrin antibody in vitro. Exp Cell Res 240: 95–106

    Article  PubMed  CAS  Google Scholar 

  25. Shakibaei M (1995) Integrin expression on epiphyseal mouse chondrocytes in monolayer culture. Histol Histopathol 10: 339–349

    PubMed  CAS  Google Scholar 

  26. Shakibaei M, Souza P de (1997) Differentiation of mesenchymal limb bud cells to chondrocytes in alginate beads. Cell Biol Int 21: 75–86

    Article  PubMed  CAS  Google Scholar 

  27. Shakibaei M, Souza P de, Merker HJ (1997) Integrin expression and collagen type II implicated in maintenance of chondrocyte shape in monolayer culture: an immunomorphological study. Cell Biol Int 21: 115–125

    Article  PubMed  CAS  Google Scholar 

  28. Shakibaei M, John T, Souza P de et al. (1999) Signal transduction by beta1 integrin receptors in human chondrocytes in vitro: collaboration with the insulin-like growth factor-I receptor. Biochem J 342: 615–623

    Article  PubMed  CAS  Google Scholar 

  29. Shakibaei M, Schulze-Tanzil G, Souza P de et al. (2001) Inhibition of mitogen-activated protein kinase kinase induces apoptosis of human chondrocytes. J Biol Chem 276: 13289–13294

    Article  PubMed  CAS  Google Scholar 

  30. Shakibaei M, Seifarth C, John T et al. (2006) Igf-I extends the chondrogenic potential of human articular chondrocytes in vitro: Molecular association between Sox9 and Erk1/2. Biochem Pharmacol 72: 1382–1395

    Article  PubMed  CAS  Google Scholar 

  31. Shakibaei M, Zimmermann B, Merker HJ (1995) Changes in integrin expression during chondrogenesis in vitro: an immunomorphological study. J Histochem Cytochem 43: 1061–1069

    PubMed  CAS  Google Scholar 

  32. Sokoloff L (1976) Articular chondrocytes in culture: matrix production and hormonal effects. Arthritis Rheum 19(Suppl 3): 426–429

    Article  PubMed  Google Scholar 

Download references

Danksagung

Der besondere Dank der Autoren gilt der technischen Unterstützung von Fr. Karoline Fischer.

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shakibaei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shakibaei, M., Csaki, C., Rahmanzadeh, M. et al. Interaktion zwischen humanen Chondrozyten und extrazellulärer Matrix in vitro. Orthopäde 37, 440–447 (2008). https://doi.org/10.1007/s00132-008-1260-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-008-1260-2

Schlüsselwörter

Keywords

Navigation