Skip to main content
Log in

Bioaccumulation of Silver and Impairment of Vital Organs in Clarias gariepinus from Co-Exposure to Silver Nanoparticles and Cow Dung Contamination

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

This study reports the implications of silver nanoparticles (AgNPs) and cow-dung contamination on water quality and oxidative perturbations in antioxidant biomarkers in the exposed Clarias gariepinus. Sixteen samples of C. gariepinus were exposed to fresh-water, 0.75 mg/mL each of AgNPs, cow-dung and a mixture of AgNPs-cow dung dosed water for 10 days. Cow-dung significantly (p < 0.05) depleted dissolved oxygen (DO) and increased biochemical oxygen demand (BOD) by 14% and 75% respectively. The trends of abundance and bioaccumulation of Ag in C. gariepinus exposed to different treatments followed kidney > muscle > gill > liver, implying the kidney was the worst affected organ. The AgNPs significantly (p < 0.05) perturbed vital organs in C. gariepinus by altering activities of antioxidant biomarkers, whereas AgNPs-cow dung had reduced perturbations implying organic matter bound Ag+ to reduce toxicity. These results conclude that AgNPs posed a challenging environment for C. gariepinus to thrive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel-Khalek AA, Badran SR, Marie MAS (2016) Toxicity evaluation of copper oxide bulk and nanoparticles in Nile tilapia, Oreochromis niloticus, using hematological, bioaccumulation and histological biomarkers. Fish Physiol Biochem 42:1225–1236

    Article  CAS  Google Scholar 

  • Abdel-Khalek AA, Badran SR, Marie MAS (2020) The efficient role of rice husk in reducing the toxicity of iron and aluminum oxides nanoparticles in Oreochromis niloticus: hematological, bioaccumulation, and histological endpoints. Water Air Soil Poll 231:53

    Article  CAS  Google Scholar 

  • Aebi H, Catalases (1974) Catalases. In: Bergmeyer, H.U. (Ed), Methods of Enzymatic Analysis 2. Academic Press New York 673–684.

  • Ale A, Bacchetta C, Rossi AS et al (2018) Nanosilver toxicity in gills of a neotropical fish: metal accumulation, oxidative stress, histopathology and other physiological effects. Ecotoxicol Environ Saf. https://doi.org/10.1016/j.ecoenv.2017.11.072

    Article  Google Scholar 

  • Arora S, Jain J, Rajwade J et al (2009) Interactions of silver nanoparticles with primarymouse fibroblasts and liver cells. Toxicol Appl Pharmacol 236(3):310–318

    Article  CAS  Google Scholar 

  • Azeez L, Adejumo AL, Lateef SOM, A, (2020) Influence of calcium nanoparticles (CaNPs) on nutritional qualities, radical scavenging attributes of Moringaoleiferaand risk assessments on human health. Food Measure 14(4):2185–2195

    Article  Google Scholar 

  • Azeez L (2021) Detection and evaluation of nanoparticles in soil environment. Chapter 3. Abdeltif A., Mohan D., Nguyen T.A., Asadi A.A., Yasin G. (Eds). Environmental impact of nanomaterials in soil. Nanomaterials for soil remediation. Micro and nanotechnology book series. Elsevier Inc 33 – 63.

  • Azeez L, Adebisi SA, Adetoro RO et al (2021) Foliar application of silver nanoparticles differentially intervenes remediation statuses and oxidative stress indicators in Abelmoschus esculentus planted on gold-mined soil. Int J Phytoremediation. https://doi.org/10.1080/15226514.2021.1949578

    Article  Google Scholar 

  • Behera SS, Ray RC (2021) Bioprospecting of cow dung microflora for sustainable agricultural, biotechnological and environmental applications. Curr Res Micro Sci 2:100018

    Google Scholar 

  • Biswas JK, Sarkar D (2019) Nanopollution in the aquatic environment and ecotoxicity: No nano issue. Curr Poll Rep 5(1):4–7

    Article  Google Scholar 

  • Ellman GL (1959) Tissue Sulfhydryl Groups Arch Biochem Biophys 82(1):70–77

    Article  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130–7139

    Article  CAS  Google Scholar 

  • Jena J, Mitra G, Patro B et al (2020) Role of fertilization, supplementary feeding and aeration in water quality changes and fry growth in intensive outdoor nursing of fringed lipped carp Labeo fimbriatus (Bloch). Aquacul Res 51:5241–5250

    Article  CAS  Google Scholar 

  • Kakakhel MA, Wu F, Sajjad W et al (2021) Long-term exposure to high-concentration silver nanoparticles induced toxicity, fatality, bioaccumulation, and histological alteration in fish (Cyprinus carpio). Environ Sci Eur 33:14. https://doi.org/10.1186/s12302-021-00453-7

    Article  CAS  Google Scholar 

  • Kanwal Z, Raza MA, Manzoor F et al (2019) Comparative assessment of nanotoxicity induced by metal (silver, nickel) and metal oxide (cobalt, chromium) nanoparticles in Labeo rohita. Nanomaterials 9(2):309

    Article  CAS  Google Scholar 

  • Khan SU, Saleh TA, Wahab A et al (2018) Nanosilver: new ageless and versatile biomedical therapeutic scaffold. Int J Nanomed 13:733–762

    Article  CAS  Google Scholar 

  • Khan MS, Javed M, Rehman MT et al (2020) Heavy metal pollution and risk assessment by the battery of toxicity tests. Sci Rep 10:16593

    Article  CAS  Google Scholar 

  • Lateef A, Oladejo SM, Akinola PO et al (2020) Facile synthesis of silver nanoparticles using leaf extract of Hyptis suaveolens (L.) Poit for environmental and biomedical applications. IOP Conf Ser. Mater. Sci. Eng. 805:012042. https://doi.org/10.1088/1757-899X/805/1/012042

  • Levard C, Mitra S, Yang T et al (2013) Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli. Environ Sci Technol 47(11):5738–5745

    Article  CAS  Google Scholar 

  • Li Y, Zhang W, Niu J et al (2013) Surface-coating-dependent dissolution, aggregation, and reactive oxygen species (ROS) generation of silver nanoparticles under different irradiation conditions. Environ Sci Technol 47(18):10293–10301

    CAS  Google Scholar 

  • Ma W, Jing L, Valladares A (2015) Silver nanoparticle exposure inducedmitochondrial stress, caspase-3 activation and cell death: amelioration by sodiumselenite. Int J Biol Sci 11:860–867

    Article  CAS  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase, an enzymatic function for erythrocuperin (hemocuperin). J Biol Chem 244:6049–6053

    Article  CAS  Google Scholar 

  • Mekkawy IA, Mahmoud UM, Hana MN et al (2019) Cytotoxic and hemotoxic effects of silver nanoparticles on the African catfish, Clarias gariepinus (Burchell, 1822). Ecotoxicol Environ Saf 171:638–646

    Article  CAS  Google Scholar 

  • Milic M, Leitinger G, Pavicic I et al (2014) Cellular uptake and toxicity effects of silver nanoparticles in mammalian kidney cells. J Appl Toxicol 35(6):581–592

    Article  Google Scholar 

  • Naguib M, Mahmoud UM, Mekkawy IM et al (2020) Hepatotoxic effects of silver nanoparticles on Clarias gariepinus; Biochemical, histopathological, and histochemical studies. Toxicol Rep 7:133–141

    Article  CAS  Google Scholar 

  • National Environmental Standards and Regulations Enforcement Agency (NESREA, 2011) National Environmental (Surface and groundwater quality control) Regulations. https://www.ecolex.org/details/legislation/national-environmental-surface-and-groundwater-quality-control-regulations-2011-si-22-of-2011-lex-faoc145947

  • Pikula K, Chaika V, Zakharenko A et al (2020) Toxicity of carbon, silicon, and metal-based nanoparticles to the hemocytes of three marine bivalves. Animals 10(5):827

    Article  Google Scholar 

  • Shah N, Khan A, Ali R et al (2020) Monitoring bioaccumulation (in gills and muscle tissues), hematology, and genotoxic alteration in Ctenopharyngodon idella exposed to selected heavy metals. BioMed Res Int. https://doi.org/10.1155/2020/6185231

    Article  Google Scholar 

  • Tabrez S, Zughaibi TA, Javed M (2021) Bioaccumulation of heavy metals and their toxicity assessment in Mystus species. Saudi J Biol Sci 28(2):1459–1464

    Article  CAS  Google Scholar 

  • Turan NB, Erkan HS, Engin GO et al (2019) Nanoparticles in the aquatic environment: Usage, properties, transformation and toxicity—A review. Proc Saf Environ Protect 130:238–249

    Article  CAS  Google Scholar 

  • Yang X, Yufang S, Ackland ML et al (2012) Biochemical responses of earthworm Eisenia fetida exposed to cadmium contaminated soil with long duration. Bull Environ Contam Toxicol 89:1148–1153

    Article  CAS  Google Scholar 

  • Yildirim NC, Yaman M (2019) The usability of oxidative stress and detoxification biomarkers in Gammarus pulex for ecological risk assessment of textile dye methyl orange. Chem Ecol 34:319–329

    Article  Google Scholar 

  • Zeumer R, Galhano V, Monteiro MS et al (2020) Chronic effects of wastewater-borne silver and titanium dioxide nanoparticles on the rainbow trout (Oncorhynchus mykiss). Sci Total Environ 723:137974

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luqmon Azeez.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azeez, L., Aremu, H.K. & Olabode, O.A. Bioaccumulation of Silver and Impairment of Vital Organs in Clarias gariepinus from Co-Exposure to Silver Nanoparticles and Cow Dung Contamination. Bull Environ Contam Toxicol 108, 694–701 (2022). https://doi.org/10.1007/s00128-021-03403-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-021-03403-4

Keywords

Navigation