Skip to main content
Log in

Exposure, Effects and Absorption of Lead in American Woodcock (Scolopax minor): A Review

  • Focused Review
  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Due to long term declines of American Woodcock (Scolopax minor) and widespread distribution of environmentally available lead (Pb) throughout their geographic range, it is important to assess if Pb exposure is a potential contributor to these declines. Woodcock are exposed to Pb through various environmental sources and are known to exhibit relatively high bone-Pb concentrations. Absorption of Pb by birds, and woodcock specifically, is not well understood. Some studies show that interactions among calcium, phosphorus, iron, zinc, and vitamin D levels may play an important role in Pb absorption. Therefore, when future Pb studies are performed for woodcock, and other birds, interactions among these elements should be considered. For example, these interactions are relevant in the acquisition and mobilization of calcium in female birds during egg development and shell calcification. These factors should be considered to understand potential mechanisms of Pb exposure, Pb absorption, and subsequent Pb toxicity to birds in general, and woodcock specifically. This review discusses Pb exposure routes, effects of Pb toxicity, and the distribution of Pb in American woodcock and identifies areas for future research in woodcock and other avian species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abadin H, Ashizawa A, Stevens Y-W (1998) Toxicological profile for lead. US Public Heal Serv Agency. Toxic Subst Dis Regist 582.

  • Al-saleh IAS (1994) The biochemical and clinical consequences of lead poisoning. Med Res Rev 14:415–486

    Article  CAS  Google Scholar 

  • Andreotti A, Borghesi F, Aradis A (2016) Lead ammunition residues in the meat of hunted woodcock: a potential health risk to consumers. Ital J Anim Sci 15:22–29

    Article  CAS  Google Scholar 

  • Ansara-Ross TM, Ross MJ, Wepener V (2013) The use of feathers in monitoring bioaccumulation of metals and metalloids in the South African endangered African grass-owl (Tyto capensis). Ecotoxicology 22:1072–1083

    Article  CAS  Google Scholar 

  • Bafundo KW, Baker DH, Fitzgerald PR (1984) Lead toxicity in the chick as affected by excess copper and zinc and by Eimeria acervulina infection. Poult Sci 63:1594–1603

    Article  CAS  Google Scholar 

  • Bar A (2008) Calcium homeostasis and vitamin D metabolism and expression in strongly calcifying laying birds. Comp Biochem Physiol A Mol Integr Physiol 151:477–490

    Article  CAS  Google Scholar 

  • Basha MR, Wei W, Brydie M, Razmiafshari M, Zawia NH (2003) Lead-induced developmental perturbations in hippocampal Sp1 DNA-binding are prevented by zinc supplementation: In vivo evidence for Pb and Zn competition. Int J Dev Neurosci 21:1–12

    Article  CAS  Google Scholar 

  • Baski SN, Kenny AD (1979) Vitamin D metabolism in Japanese quail: gonadal hormones and dietary calcium effects. Toxicol Appl Pharmacol 51:489–495

    Article  Google Scholar 

  • Beyer WN, Connor EE, Gerould S (1994) Estimates of soil ingestion by wildlife. J Wildl Manage 58:375–382

    Article  Google Scholar 

  • Beyer WN, Dalgarn J, Dudding S, French JB, Mateo R, Miesner J, Sileo L, Spann J (2004) Zinc and lead poisoning in wild birds in the Tri-State Mining District (Oklahoma, Kansas, and Missouri). Arch Environ Contam Toxicol 48:108–117

    Article  CAS  Google Scholar 

  • Beyer WN, Franson JC, French JB, May T, Rattner BA, Shearn-Bochsler VI, Warner SE, Wber J, Mosby D (2013) Toxic exposure of song birds to lead in the Southeast Missouri Lead Mining District. Arch Environ Contam Toxicol 65:598–610

    Article  CAS  Google Scholar 

  • Beyer WN, Basta NT, Chaney RL, Henry PFP, Mosby DE, Rattner BA, Scheckel KG, Sprague DT, Weber JS (2016) Bioaccessibility tests accurately estimate bioavailability of lead to quail. Environ Toxicol Chem 35:1–9

    Article  CAS  Google Scholar 

  • Bianchi N, Ancora S, di Fazio N, Leonzio C (2008) Cadmium, lead, and mercury levels in feathers of small passerine birds: noninvasive sampling strategy. Environ Toxicol Chem 27:2064–2070

    Article  CAS  Google Scholar 

  • Blus LJ, Henny CJ, Hoffman DJ, Grove RA (1995) Accumulation in and effects of lead and cadmium on waterfowl and passerines in northern Idaho. Environ Pollut 89:311–318

    Article  CAS  Google Scholar 

  • Borghesi F, Migani F, Andreotti A, Baccetti N, Bianchi N, Birke M, Dinelli E (2016) Metals and trace elements in feathers: a geochemical approach to avoid misinterpretation of analytical responses. Sci Total Environ 544:476–494

    Article  CAS  Google Scholar 

  • Bortolotti GR (2010) Flaws and pitfalls in the chemical analysis of feathers: bad news-good news for avian chemoecology and toxicology. Ecol Appl 20:1766–1774

    Article  Google Scholar 

  • Boughattas I, Hattab S, Boussetta H, Sappin-Didier V, Viarengo A, Banni M, Sforzini S (2016) Biomarker responses of Eisenia andrei to a polymetallic gradient near a lead mining site in North Tunisia. Environ Pollut 218:530–541

    Article  CAS  Google Scholar 

  • Burger J (1993) Metals in avian feathers: bioindicators of environmental pollution. Rev. Environ Toxicol 5:203–311

    Google Scholar 

  • Carlson BL, Nielsen SW (1985) Influence of dietary calcium on lead poisoning in mallard ducks (Anas platyrynchos). Am J Vet Res 46:276–282

    CAS  Google Scholar 

  • Carvalho PC, Bugoni L, McGill RAR, Bianchini A (2013) Metal and selenium concentrations in blood and feathers of petrels of the genus procellaria. Environ Toxicol Chem 32:1641–1648

    Article  CAS  Google Scholar 

  • Chrastný V, Komárek M, Hájek T (2010) Lead contamination of an agricultural soil in the vicinity of a shooting range. Environ Monit Assess 162:37–46

    Article  CAS  Google Scholar 

  • Church ME (2006) Ammunition is the principal source of lead accumulated by California condors re-introduced to the wild. Environ Sci Technol 40:6143–6150

    Article  CAS  Google Scholar 

  • Custer TW, Franson JC, Pattee OH (1984) Tissue lead distribution and hematologic effects in American kestrels (Falco sparverius L.) fed biologically incorporated lead. J Wildl Dis 20:39–43

    Article  CAS  Google Scholar 

  • Dacke CG, Arkle S, Cook DJ, Wormstone IM, Jones S, Zaidi M, Bascal ZA (1993) Medullary bone and avian calcium regulation. J Exp Biol 184:63–88

    CAS  Google Scholar 

  • Darling CTR, Thomas VG (2005) Lead bioaccumulation in earthworms, Lumbricus terrestris, from exposure to lead compounds of differing solubility. Sci Total Environ 346:70–80

    Article  CAS  Google Scholar 

  • Dauwe T, Bervoets L, Blust R, Eens M (2002) Tissue levels of lead in experimentally exposed zebra finches (Taeniopygia guttata) with particular attention on the use of feathers as biomonitors. Arch Environ Contam Toxicol 42:88–92

    Article  CAS  Google Scholar 

  • Dauwe T, Bervoets L, Pinxten R, Blust R, Eens M (2003) Variation of heavy metals within and among feathers of birds of prey: effects of molt and external contamination. Environ Pollut 124:429–436

    Article  CAS  Google Scholar 

  • Dauwe T, Snoeijs T, Bervoets L, Blust R, Eens M (2006) Calcium availability influences lead accumulation in a passerine bird. Anim Biol 56:289–298.

    Article  Google Scholar 

  • De Francisco N, Troya JDR, Aguera EI (2003) Lead and lead toxicity in domestic and free living birds. Avian Pathol 32:3–13

    Article  CAS  Google Scholar 

  • Di Giulo RT, Scanlon PF (1984) Effects of cadmium and lead ingestion on tissue concentrations of cadmium, lead, copper and zinc in Mallard ducks. Sci Total Environ 39:103–110

    Article  Google Scholar 

  • Edelstein S, Fullmer CS, Wasserman RH (1984) Gastrointestinal absorption of lead in chicks: Involvement of the cholecalciferol endocrine system. J Nutr 114:692–700

    CAS  Google Scholar 

  • Edwards HM Jr (2000) Nutrition and skeletal problems in poultry. Poult Sci 79:1018–1023

    Article  CAS  Google Scholar 

  • Eeva T, Lehikoinen E (2004) Rich calcium availability diminishes heavy metal toxicity. Funct Ecol 18:548–553

    Article  Google Scholar 

  • Ek KH, Morrison GM, Lindberg P, Rauch S (2004) Comparative tissue distribution of metals in birds in Sweden using ICP-MS and laser ablation ICP-MS. Arch Environ Contam Toxicol 47:259–269

    Article  CAS  Google Scholar 

  • Ethier ALM, Braune BM, Scheuhammer AM, Bond DE (2007) Comparison of lead residues among avian bones. Environ Pollut 145:915–919

    Article  CAS  Google Scholar 

  • Finkelstein ME, George D, Scherbinski S, Gwiazda R, Johnson M, Burnett J, Brandt J, Lawrey S, Pessier AP, Clark M, Wynne J, Grantham J, Smith DR (2010) Feather lead concentrations and 207Pb/206Pb ratios reveal lead exposure history of California condors (Gymnogyps californianus). Environ Sci Technol 44:2639–2647

    Article  CAS  Google Scholar 

  • Finkelstein ME, Doak DF, George D, Burnett J, Brandt J, Church M, Grantham J, Smith DR (2012) Lead poisoning and the deceptive recovery of the critically endangered California condor. Proc Natl Acad Sci USA 109:11449–11454

    Article  CAS  Google Scholar 

  • Fisher IJ, Pain DJ, Thomas VG (2006) A review of lead poisoning from ammunition sources in terrestrial birds. Biol Conserv 131:421–432

    Article  Google Scholar 

  • Flora SJS, Tandon SK (1990) Beneficial effects of zinc supplementation during chelation treatment of lead intoxication in rats. Toxicology 64:129–139

    Article  CAS  Google Scholar 

  • Fullmer CS (1992) Intestinal interactions of lead and calcium. Neurotoxicology 13:799–808

    CAS  Google Scholar 

  • Fullmer CS (1997) Lead-calcium interactions: involvment of 1,25-dihydroxyvitamin D. Environ Res 72:45–55

    Article  CAS  Google Scholar 

  • Fullmer CS, Edelstein S, Wasserman RH (1985) Lead-binding properties of intestinal calcium-binding proteins. J Biol Chem 260:6816–6819

    CAS  Google Scholar 

  • Gochfeld JBM (2000) Effects of lead on birds (Laridae): a review of laboratory and field studies. J Toxicol Environ Health Part B 3:59–78

    Article  Google Scholar 

  • Goede AA, de Bruin M (1984) The use of bird feather parts as a monitor for metal pollution. Environ Pollut Ser B 8:281–298

    Article  CAS  Google Scholar 

  • Goede AA, De Bruin M (1986) The use of bird feathers for indicating heavy metal pollution. Environ Monit Assess 7:249–256

    Article  CAS  Google Scholar 

  • Haig SM, D’Elia J, Eagles-Smith C, Fair JM, Gervais J, Herring G, Rivers JW, Schulz JH (2014) The persistent problem of lead poisoning in birds from ammunition and fishing tackle. Condor 116:408–428

    Article  Google Scholar 

  • Hargreaves AL, Whiteside DP, Gilchrist G (2010) Concentrations of 17 elements, including mercury, and their relationship to fitness measures in arctic shorebirds and their eggs. Sci Total Environ 408:3153–3161

    Article  CAS  Google Scholar 

  • Härtel H (1990) Evaluation of the dietary interaction of calcium and phosphorus in the high producing laying hen. Br Poult Sci 31:473–494

    Article  Google Scholar 

  • Hiller BJ, Barclay JS (2011) Concentrations of heavy metals in American woodcock harvested in Connecticut. Arch Environ Contam Toxicol 60:156–164

    Article  CAS  Google Scholar 

  • Hosseini Alhashemi AS, Karbassi AR, Hassanzadeh Kiabi B, Monavari SM, Nabavi SMB, Sekhavatjou MS (2011) Bioaccumulation of trace elements in trophic levels of wetland plants and waterfowl birds. Biol Trace Elem Res 142:500–516

    Article  CAS  Google Scholar 

  • Hsu PC, Guo YL (2002) Antioxidant nutrients and lead toxicity. Toxicology 180:33–44

    Article  CAS  Google Scholar 

  • Johnson GD, Audet DJ, Kern JW, LeCaptain LJ, Strickland MD, Hoffman DJ, McDonald LL (1999) Lead exposure in passerines inhabiting lead-contaminated floodplains in the Coeur D’Alene River Basin, Idaho, USA. Environ Toxicol Chem 18:1190–1194

    CAS  Google Scholar 

  • Kaufman CA, Bennett JR, Koch I, Reimer KJ (2007) Lead bioaccessibility in food web intermediates and the influence on ecological risk characterization. Environ Sci Technol 41:5902–5907

    Article  CAS  Google Scholar 

  • Kendall RJ, Lacher TE Jr, Bunck C, Daniel B, Driver C, Grue CE, Leighton F, Stansley W, Watanabe PG, Whitworth M (1996) An ecological risk assessment of lead shot exposure in non-waterfowl avian species: upland game birds and raptors. Environ Toxicol Chem 15:4–20

    Article  CAS  Google Scholar 

  • Kendall RJ, Scanlon PF, Di Giulio RT (1982) Toxicology of ingested lead shot in ringed turtle doves. Arch Environ Contam Toxicol 11:259–263

    Article  CAS  Google Scholar 

  • Keppie DM, Whiting RM Jr (1994) American woodcock (Scolopax minor). In: Poole A, Gill F (eds) The birds of North America, no 100. The Academy of Natural Sciences, Philadelphia; The American Ornithologists’ Union, Washington D.C.

  • Kerr R, Holladay J, Holladay S, Tannenbaum L, Selcer B, Meldrum B, Williams S, Jarrett T, Gogal R (2011) Oral lead bullet fragment exposure in Northern bobwhite (Colinus virginianus). Arch Environ Contam Toxicol 61:668–676

    Article  CAS  Google Scholar 

  • Kim J, Oh J-M (2014) Lead and cadmium contaminations in feathers of heron and egret chicks. Environ Monit Assess 186:2321–2327

    Article  CAS  Google Scholar 

  • Kitowski I, Sujak A, Wiącek D, Komosa A (2017) Ecological factors helping to avoid the toxic element accumulation in livers of the lesser spotted eagle (Clanga pomarina Brehm) from Eastern Poland. J Elementol 22:305–314

    Google Scholar 

  • Koivula MJ, Eeva T (2010) Metal-related oxidative stress in birds. Environ Pollut 158:2359–2370

    Article  CAS  Google Scholar 

  • Komárek M, Ettler V, Chrastný V, Mihaljevic M (2008) Lead isotopes in environmental sciences: a review. Environ Int 34:562–577

    Article  CAS  Google Scholar 

  • Krohn WB (1977) Band-recovery distribution of eastern Maine woodcock. Wildl Soc Bull 5:118–122

    Google Scholar 

  • Kwong WT, Friello P, Semba RD (2004) Interactions between iron deficiency and lead poisoning: epidemiology and pathogenesis. Sci Total Environ 330:21–37

    Article  CAS  Google Scholar 

  • Legagneux P, Suffice P, Messier J-S, Lelievre F, Tremblay JA, Maisonneuve C, Saint-Louis R, Bety J (2014) High risk of lead contamination for scavengers in an area with high moose hunting success. PLoS ONE 9:1–7

    Article  CAS  Google Scholar 

  • Lester MB, Van Riper C (2014) The distribution and extent of heavy metal accumulation in song sparrows along Arizona’s upper Santa Cruz River. Environ Monit Assess 186:4779–4791

    Article  CAS  Google Scholar 

  • Lounsbury-Billie MJ, Rand GM, Cai Y, Bass OL (2008) Metal concentrations in osprey (Pandion haliaetus) populations in the Florida Bay estuary. Ecotoxicology 17:616–622

    Article  CAS  Google Scholar 

  • Lumeij JT (1985) Clinicopathologic aspects of lead poisoning in birds: a review. Vet Q 7:133–138

    Article  CAS  Google Scholar 

  • Marguí E, Iglesias M, Queralt I, Hidalgo M (2006) Lead isotope ratio measurements by ICP-QMS to identify metal accumulation in vegetation specimens growing in mining environments. Sci Total Environ 367:988–98

    Article  CAS  Google Scholar 

  • Martinez-Haro M, Taggart MA, Green AJ, Mateo R (2009) Avian digestive tract simulation to study the effect of grit geochemistry and food on Pb shot Bioaccessibility. Environ Sci Technol 43:9480–9486

    Article  CAS  Google Scholar 

  • Mateo R, Hoffman DJ (2001) Differences in oxidative stress between young Canada geese and mallards exposed to lead-contaminated sediment. J Toxicol Environ Health A 64:531–545

    Article  CAS  Google Scholar 

  • Morgan JE, Morgan AJ (1998) The distribution and intracellular compartmentation of metals in the endogeic earthworm Aporrectodea caliginosa sampled from an unpolluted and a metal-contaminated site. Environ Pollut 99:167–175

    Article  CAS  Google Scholar 

  • Mykkanen HM, Wasserman RH, Fullmer S (1984) Effect of phosphate on the intestinal absorption lead (203Pb) in chicks. J Nutr 114:68–75

    CAS  Google Scholar 

  • Niethammer KR, Atkinson RD, Baskett TS, Samson FB (1985) Metals in riparian wildlife of the lead mining district of Southeastern Missouri. Arch Environ Cont Toxicol 14:213–223

    Article  CAS  Google Scholar 

  • Nordberg GF, Fowler BA, Nordberg M, Friberg LT (eds) (2007) Handbook on the toxicology of metals, 3rd edn. Alternative Press, San Diego

    Google Scholar 

  • Norman AW, Hurwitz S (1993) The role of the vitamin D endocrine system in avian bone biology. J Nutr 25:310–316

    Google Scholar 

  • Owen RBJ, Krohn WB (1973) Molt patterns and weight changes of the American woodcock. Wilson Bull 85:31–41

    Google Scholar 

  • Pain DJ (1992) Lead poisoning of waterfowl: a review. Proc IWRB Work IWRB Spec Publ 7–13

  • Pain DJ, Meharg AA, Ferrer M, Taggart M, Penteriani V (2005) Lead concentrations in bones and feathers of the globally threatened Spanish imperial eagle. Biol Conserv 121:603–610

    Article  Google Scholar 

  • Pain DJ, Carter I, Sainsbury AW, Shore RF, Eden P, Taggart MA, Konstantinos S, Walker LA, Meharg AA, Raab A (2007) Lead contamination and associated disease in captive and reintroduced red kites (Milvus milvus) in England. Sci Total Environ 376:116–127

    Article  CAS  Google Scholar 

  • Pain DJ, Fisher IJ, Thomas VG (2009) A global update of lead poisoning in terrestrial birds from ammunition sources. In: Watson RT, Fuller M, Pokras M, Hunt WG (Eds.) Ingestion of lead from spent ammunition: implications for wildlife and humans. The Peregrine Fund, Boise, p 99–118

    Google Scholar 

  • Pattee OH, Pain DJ (2002) Chapter 15: Lead in the environment. In: Hoffman DJ, Rattner BA, Burton GA Jr, Cairns J Jr (eds) Handbook of ecotoxicology, 2nd edn. CRC Press, p 373

  • Pelicia K, Garcia E, Faitarone A, Silva AP, Berto DA, Molino AB, Vercese F (2009) Calcium and available phosphorus levels for laying hens in second production cycle. Braz J Poult Sci 11:39–49

    Google Scholar 

  • Peraza MA, Ayala-Fierro F, Barber DS, Casarez E, Rael LT (1998) Effects of micronutrients on metal toxicity. Environ Health Perspect 106:203–216

    CAS  Google Scholar 

  • Pikula J, Hajkova P, Bandouchova H, Bednarova I, Adam V, Beklova M, Kral J, Ondracek K, Osickova J, Pohanka M, Sedlackova J, Skchova H, Sobotka J, Treml F, Kizek R (2013) Lead toxicosis of captive vultures: case description and responses to chelation therapy. BMC Vet Res 9:11

    Article  CAS  Google Scholar 

  • Pokras MA, Kneeland MR (2009) Understanding lead uptake and effects across species lines: a conservation medicine based approach. In: Watson RT, Fuller M, Pokras M, Hunt WG (eds) Ingestion of lead from spent ammunition: implications for wildlife and humans. The Peregrine Fund, Boise, p 7–22

    Google Scholar 

  • Poppenga RH, Tawde S (2012) Veterinary toxicology. Academic Press, Elsevier, San Diego

    Google Scholar 

  • Rattner BA, Ackerson BK (2008) Potential environmental contaminant risks to avian species at important bird areas in the Northeastern United States. Integr Environ Assess Manag 4:344–357

    Article  CAS  Google Scholar 

  • Rattner BA, Franson JC, Sheffield SR, Goddard CI, Leonard NJ, Stang D, Wingate PJ (2008) Sources and implications of lead ammunition and fishing tackle on natural resources. The Wildlife Society and American Fisheries Society Technical Review Committee on Lead in the Environment

  • Rosado JL, Lo P, Kordas K, Garcia-Vargas G, Ronquillo D, Alatorre J, Stoltzfus RJ (2006) Iron and/or zinc supplementation did not reduce blood lead concentrations in children in a randomized, placebo-controlled trial. J Nutr 136:2378–2383

    CAS  Google Scholar 

  • Ruiz S, Espín S, Rainio M, Ruuskanen S, Salminen JP, Lilley TM, Eeva T (2016) Effects of dietary lead exposure on vitamin levels in great tit nestlings—an experimental manipulation. Environ Pollut 213:688–697

    Article  CAS  Google Scholar 

  • Saint-Laurent D, St-Laurent J, Hähni M, Ghaleb B, Chapados C (2010) Using lead concentrations and stable lead isotope ratios to identify contamination events in alluvial soils. Appl Environ Soil Sci 2010:1–12

    Article  CAS  Google Scholar 

  • Sanderson GC, Bellrose FC (1986) A review of the problem of lead poisoning in waterfowl. Illinois Nat Hist Surv Spec Publ 4:1–34.

    Google Scholar 

  • Sangster DF, Outridge PM, Davis WJ (2000) Stable lead isotope characteristics of lead ore deposits of environmental significance. Environ Rev 8:115–147

    Article  CAS  Google Scholar 

  • Scanlon PF, Brien TGO, Schauer NL, Oderwald RG (1979) Lead levels in primary feathers of American woodcocks harvested by hunters throughout the United States range. Bull Envrion Contam Toxicol 21:683–688

    Article  CAS  Google Scholar 

  • Scheifler R, Cœurdassier M, Morilhat C, Bernard N, Faivre B, Flicoteaux P, Giraudoux P, Noel M, Piotte P, Rieffel D, de Vaufleury A, Badot PM (2006) Lead concentrations in feathers and blood of common blackbirds (Turdus merula) and in earthworms inhabiting unpolluted and moderately polluted urban areas. Sci Total Environ 371:197–205

    Article  CAS  Google Scholar 

  • Scheuhammer AM (1987) The chronic toxicity of aluminium, cadmium, mercury, and lead in birds: a review. Environ Pollut 46:263–295

    Article  CAS  Google Scholar 

  • Scheuhammer AM (1996) Influence of reduced dietary calcium on the accumulation and effects of lead, cadmium, and aluminum in birds. Environ Pollut 94:339–343

    Article  Google Scholar 

  • Scheuhammer AM, Templeton DM (1998) Use of stable isotope ratios to distinguish sources of lead exposure in wild birds. Ecotoxicology 7:37–42

    Article  CAS  Google Scholar 

  • Scheuhammer AM, Rogers CA, Bond D (1999) Elevated lead exposure in American woodcock (Scolopax minor) in eastern Canada. Arch Environ Contam Toxicol 340:334–340

    Article  Google Scholar 

  • Scheuhammer AM, Bond DE, Burgess NM, Rodrigue J (2003) Lead and stable lead isotope ratios in soil, earthworms, and bones of American woodcock (Scolopax minor) from eastern Canada. Environ Toxicol Chem 22:2585–2591

    Article  CAS  Google Scholar 

  • Schulz JH, Millspaugh JJ, Bermudez AJ, Gao X, Bonnot TW, Britt LG, Paine M (2006) Acute lead toxicosis in mourning doves. J Wildl Manage 70:413–421

    Article  Google Scholar 

  • Schulz JH, Gao X, Millspaugh JJ, Bermudex AJ (2007) Experimental lead pellet ingestion in mourning doves (Zenaida macroura). Am Midl Nat 158:177–190

    Article  Google Scholar 

  • Schulz JH, Feming J, Gao S (2012) 2011 Mourning Dove harest monitoring program annual report. Missouri Department of Conservation, Resource Science Division, Columbia, MO, USA

  • Schwalfenberg GK, Genuis SJ (2015) Vitamin D, essential minerals, and toxic elements: Exploring interactions between nutrients and toxicants in clinical medicine. Sci World J 2015:1–8

    Article  CAS  Google Scholar 

  • Seamans ME, Rau RD (2016) American woodcock population status, 2016. U.S. Fish Wildlife Service, Laurel, MD, pp 1–17

    Google Scholar 

  • Smith DR, Niemeyer S, Estes JA, Flegal AR (1990) Stable lead isotopes evidence anthropogenic contamination in Alaskan sea otters. Environ Sci Technol 24:1517–1521

    Article  CAS  Google Scholar 

  • Sneddon J, Clemente R, Riby P, Lepp NW (2009) Source-pathway-receptor investigation of the fate of trace elements derived from shotgun pellets discharged in terrestrial ecosystems managed for game shooting. Environ Pollut 157:2663–2669

    Article  CAS  Google Scholar 

  • Snoeijs T, Dauwe T, Pinxten R, Darras VM, Arckens L, Eens M (2005) The combined effect of lead exposure and high or low dietary calcium on health and immunocompetence in the zebra finch (Taeniopygia guttata). Environ Pollut 134:123–132

    Article  CAS  Google Scholar 

  • Stevenson AL, Scheuhammer AM, Chan HM (2005) Effects of nontoxic shot regulations on lead accumulation in ducks and American woodcock in Canada. Arch Environ Contam Toxicol 48:405–413

    Article  CAS  Google Scholar 

  • Strom SM, Patnode KA, Langenberg JA, Bodenstein BL, Scheuhammer AM (2005) Lead contamination in American woodcock (Scolopax minor) from Wisconsin. Arch Environ Contam Toxicol 49:396–402

    Article  CAS  Google Scholar 

  • Strom S, Langenberg JA, Businga NK, Batten JK (2009) Lead exposure in Wisconsin birds. In: Watson RT, Fuller M, Pokras M, Hunt WG (eds) Ingestion lead from spent ammunition: impliccations for wildlife and humans. The Peregine Fund, Biose, p 194–201

    Google Scholar 

  • Suthar S, Singh S, Dhawan S (2008) Earthworms as bioindicator of metals (Zn, Fe, Mn, Cu, Pb and Cd) in soils: is metal bioaccumulation affected by their ecological category? Ecol Eng 32:99–107

    Article  Google Scholar 

  • Sutherland RA, Day JP, Bussen JO (2003) Lead concentrations, isotope ratios, and source apportionment in road deposited sediments, Honolulu, Oahu, Hawaii. Water Air Soil Pollut 142:165–186

    Article  CAS  Google Scholar 

  • Svanberg F, Mateo R, Hillström L, Green AJ, Taggart MA, Raab A, Meharg AA (2006) Lead isotopes and lead shot ingestion in the globally threatened marbled teal (Marmaronetta angustirostris) and white-headed duck (Oxyura leucocephala). Sci Total Environ 370:416–424

    Article  CAS  Google Scholar 

  • Thomas VG, Scheuhammer AM, Bond DE (2009) Bone lead levels and lead isotope ratios in red grouse from Scottish and Yorkshire moors. Sci Total Environ 407:3494–3502

    Article  CAS  Google Scholar 

  • Tranel M, Kimmel RO (2009) Impacts of lead ammunition on wildlife, the environment, and human health—a literature review and implications for Minnesota. In: Watson RT, Fuller M, Pokras M, Hunt WG (eds) Ingestion of lead from spent ammunition: implications for wildlife and humans. The Peregrine Fund, Boise, p 318–337

    Google Scholar 

  • Tsuji LJS, Wainman BC, Martin ID, Sutherland C, Weber JP, Dumas P, Nieboer E (2008) The identification of lead ammunition as a source of lead exposure in first nations: the use of lead isotope ratios. Sci Total Environ 393:291–298

    Article  CAS  Google Scholar 

  • U.S. EPA (1993) Wildlife exposure factors handbook, vol I of II. United States Environmental Protection Agency, Washington D.C.

    Google Scholar 

  • Vermillion B, Brugam R, Retzlaff W, Bala I (2005) The sedimentary record of environmental lead contamination at St. Louis, Missouri (USA) area smelters. J Paleolimnol 33:189–203

    Article  Google Scholar 

  • Vyas NB, Spann JW, Heinz GH (2001) Lead shot toxicity to passerines. Environ Pollut 111:135–138

    Article  CAS  Google Scholar 

  • Wasserman RH, Taylor AN (1963) Vitamin D3 inhibition of radiocalcium binding by chick intestinal homogenates. Nature 198:30–32

    Article  CAS  Google Scholar 

  • Wasserman RH, Taylor AN (1966) Vitamin D3-induced calcium-binding protein in chick intestinal mucosa. Science 152:791–793

    Article  CAS  Google Scholar 

  • Whittow GC (ed) (2000) Sturkies avian physiology, 5th edn. Academic Press, San Diego

    Google Scholar 

  • Wong CSC, Duzgoren-Aydin NS, Aydin A, Wong MH (2007) Evidence of excessive releases of metals from primitive e-waste processing in Guiyu, China. Environ Pollut 148:62–72

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Intern Schol Resear. Network 2011:1–20

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge research assistantship funding from the Department of Environmental Toxicology of Texas Tech University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Klein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

French, A.D., Conway, W.C., Cañas-Carrell, J.E. et al. Exposure, Effects and Absorption of Lead in American Woodcock (Scolopax minor): A Review. Bull Environ Contam Toxicol 99, 287–296 (2017). https://doi.org/10.1007/s00128-017-2137-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-017-2137-z

Keywords

Navigation