Skip to main content
Log in

Influence of Lipophilicity on the Toxicity of Bisphenol A and Phthalates to Aquatic Organisms

  • Focused Review
  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Bisphenol A (BPA) and phthalates are among the most popular plasticizers used today and have been reported ubiquitously in surface water, ground water, and sediment. For aquatic organisms, BPA was the most toxic (96 h LC50s) to aquatic invertebrates (0.96–2.70 mg/L) and less toxic to fish (6.8–17.9 mg/L). The toxicity of BPA to amphibians differed among developmental stages, with embryos having an LC50 of 4.6–6.8 mg/L and juveniles 0.50–1.4 mg/L. The toxicity of phthalates is affected by aromatic ring substitution, alkyl chain length, and metabolism. The toxicity (96 h LC50s) of phthalates was similar to aquatic invertebrates (0.46–377 mg/L) and fish (0.48–121 mg/L). In general, the toxicity of phthalates appears to be highest around a log KOW of 6, which corresponds to the highest potential for bioconcentration and bioaccumulation. In conclusion, the lipophilicity of BPA and phthalates influence their toxicity to aquatic species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Adams WJ, Biddinger GR, Robillard KA (1995) A summary of the acute toxicity of 14 phthalate esters to representative aquatic organisms. Environ Toxicol Chem 14:1569–1574

    Article  CAS  Google Scholar 

  • Aluru N, Leatherland JF, Vijayan MM (2010) Bisphenol A in oocytes leads to growth suppression and altered stress performance in juvenile rainbow trout. PLoS One 5:e10741

    Article  Google Scholar 

  • Andersen HR, Halling-Sørensen B, Kusk KO (1999) A parameter for detecting estrogenic exposure in the copepod Acartia tonsa. Ecotoxicol Environ Saf 44:56–61

    Article  CAS  Google Scholar 

  • Arnot JA, Gobas FA (2003) A generic QSAR for assessing the bioaccumulation potential of organic chemicals in aquatic food webs. QSAR Comb Sci 22:337–345

    Article  CAS  Google Scholar 

  • Bantle JA, Finch RA, Fort DJ, Stover EL, Hull M, Kumsher-King M, Gaudet-Hull AM (1999) Phase III Interlaboratory study of FETAX Part 3. FETAX validation using 12 compounds with and without an exogenous metabolic activation system. J Appl Toxicol 19:447–472

    Article  CAS  Google Scholar 

  • Barber ED, Topping DC (1995) Subchronic 90-day oral toxicology of di(2-ethylhexyl) terephthalate in the rat. Food Chem Toxicol 33:971–978

    Article  CAS  Google Scholar 

  • Barse AV, Chakrabarti T, Ghosh TK, Pal AK, Jadhao SB (2007) Endocrine disruption and metabolic changes following exposure of Cyprinus carpio to diethyl phthalate. Pestic Biochem Phys 88:36–42

    Article  CAS  Google Scholar 

  • Bhandari RK, Deem SL, Holliday DK, Jandegian CM, Kassotis CD, Nagel SC, Tillitt DE, vom Saal FS, Rosenfeld CS (2015) Effects of the environmental estrogenic contaminants bisphenol A and 17α-ethinyl estradiol on sexual development and adult behaviors in aquatic wildlife species. Gen Comp Endocrinol 214:195–219

    Article  CAS  Google Scholar 

  • Buccafusco RJ, Ellis SJ, LeBlanc GA (1981) Acute toxicity of priority pollutants to bluegill (Hepomis macrochirus). Bull Environ Contam Toxicol 26:446–452

    Article  CAS  Google Scholar 

  • Burridge LE, Haya K (1995) A review of di-n-butylphthalate in the aquatic environment: concerns regarding its use in salmonid aquaculture. J World Aquac Soc 26:1–13

    Article  Google Scholar 

  • Call DJ, Markee TP, Geiger DL, Brooke LT, VandeVenter FA, Cox DA, Genisot KI, Robillard KA, Gorsuch JW, Parkerton TF, Reiley MC, Ankley GT, Mount DR (2001) An assessment of the toxicity of phthalate esters to freshwater benthos. 1. Aquatic exposures. Environ Toxicol Chem 20:1798–1804

    Article  CAS  Google Scholar 

  • Daniels PH (2009) A brief overview of theories of PVC plasticization and methods used to evaluate PVC-plasticizer interaction. J Vinyl Addit Technol 15:219–223

    Article  CAS  Google Scholar 

  • de Solla SR, Gilroy ÉAM, Klinck JS, King LE, McInnis R, Struger J, Backus SM, Gillis PL (2016) Bioaccumulation of pharmaceuticals and personal care products in freshwater mussels (Lasmigona costata) in a river receiving WWTP effluent. Chemosphere 146:486–496

    Article  Google Scholar 

  • DeFoe DL, Holcombe GW, Hammermeister DE, Biesinger KE (1990) Solubility and toxicity of eight phthalate esters to four aquatic organisms. Environ Toxicol Chem 9:623–636

    Article  CAS  Google Scholar 

  • Deyo JA (2008) Carcinogenecity and chronic toxicity of di-2-ethyhexyl terephthalate (DEHT) following a 2-year dietary exposure in Fischer 344 rats. Food Chem Toxicol 46:990–1005

    Article  CAS  Google Scholar 

  • Dorn PB, Chou C-S, Gentempo JJ (1987) Degradation of bisphenol A in natural waters. Chemosphere 16:1501–1507

    Article  CAS  Google Scholar 

  • Duan Z, Zhu L, Zhu L, Yao K, Zhu X (2008) Individual and joint toxic effects of pentachlorophenol and bisphenol A on the development of zebrafish (Danio rerio) embryo. Ecotoxicol Environ Saf 71:774–780

    Article  CAS  Google Scholar 

  • Ellington JJ, Floyd TL (1996) Octanol/water partition coefficients for eight phthalate esters. EPA/600/S-96/006. USEPA (National Exposure Research Lab), Athens

  • Ema M (2002) Antiandrogenic effects of dibutyl phthalate and its metabolite, monobutyl phthalate, in rats. Congenit Anom 42:297–308

    Article  CAS  Google Scholar 

  • Faber WD, Deyo JA, Stump DG, Ruble K (2007) Two-generation reproduction study of di-2-ethylhexyl terephthalate in Crl:CD rats. Birth Defects Res Part B Dev Reprod Toxicol 80:69–81

    Article  CAS  Google Scholar 

  • Geiger DL, Northcott CE, Call DJ, Brooke LT (1985) Acute toxicities of organic chemicals to fathead minnows (Pimephales promelas), vol II. University of Wisconsin, Superior

    Google Scholar 

  • Ghorpade N, Mehta V, Khare M, Sinkar P, Krishnan S, Rao CV (2002) Toxicity study of diethyl phthalate on freshwater Cirrhina mrigala. Ecotoxicol Environ Saf 53:255–258

    Article  CAS  Google Scholar 

  • Gledhill WE, Kaley RG, Adams WJ, Hicks O, Michael PR, Saeger VW, LeBlanc GA (1980) An environmental safety assessment of butyl benzyl phthalate. Environ Sci Technol 14:301–305

    Article  CAS  Google Scholar 

  • Gobas FA, Opperhuizen A, Hutzinger O (1986) Bioconcentration of hydrophobic chemicals in fish: relationship with membrane permeation. Environ Toxicol Chem 5:637–646

    Article  CAS  Google Scholar 

  • Gray LEJ, Ostby J, Furr J, Price M, Veeramachaneni DNR, Parks L (2000) Perinatal exposure to the phthalates DEHP, BBP, and DINP, but not DEP, DMP, or DOTP, alters sexual differentiation of the male rat. Toxicol Sci 58:350–365

    Article  CAS  Google Scholar 

  • Hansch C, Leo A, Hoekman D (1995) Exploring QSAR hydrophobic, electronic and steric constants. American Chemical Society, Washington, DC

    Google Scholar 

  • Hirano M, Ishibashi H, Matsumura N, Nagao Y, Watanabe N, Watanabe A, Onikura N, Kishi K, Arizono K (2004) Acute toxicity responses of two crustaceans, Americamysis bahia and Daphnia magna, to endocrine disrupters. J Health Sci 50:97–100

    Article  CAS  Google Scholar 

  • Horn O, Nalli S, Cooper D, Nicell J (2004) Plasticizer metabolites in the environment. Water Res 38:3693–3698

    Article  CAS  Google Scholar 

  • Howard PH, Banerjee S, Robrillard KH (1985) Measurement of water solubilities, octanol–water partition coefficients and vapor pressures of commercial phthalate esters. Environ Toxicol Chem 4:653–661

    Article  CAS  Google Scholar 

  • Ike M, Chen M-Y, Jin C-S, Fujita M (2002) Acute toxicity, mutagenicity, and estrogenicity of biodegradation products of bisphenol-A. Environ Toxicol 17:457–461

    Article  CAS  Google Scholar 

  • Iwamuro S, Sakakibara M, Terao M, Ozawa A, Kurobe C, Shigeura T, Kato M, Kikuyama S (2003) Teratogenic and anti-metamorphic effects of bisphenol a on embryonic and larval Xenopus laevis. Gen Comp Endocrinol 133:189–198

    Article  CAS  Google Scholar 

  • Jackson JA, Birnbaum LS, Diliberto JJ (1996) Effects of age, sex, and pharmacologic agents on the biliary elimination of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in F344 rats. Drug Metab Dispos 26:714–719

    Google Scholar 

  • Jonsson S, Baun A (2003) Toxicity of mono- and di-esters of o-phthalic esters to a crustacean, a green alga, and a bacterium. Environ Toxicol Chem 22:3037–3043

    Article  CAS  Google Scholar 

  • Kwak HI, Bae MO, Lee MH, Lee YS, Lee BJ, Kang KS, Chae CH, Sung HJ, Shin JS, Kim JH, Mar WC (2001) Effects of nonylphenol, bisphenol A, and their mixture on the viviparous swordtail fish (Xiphophorus helleri). Environ Toxicol Chem 20:787–795

    Article  CAS  Google Scholar 

  • Larsson P, Thurén A (1987) Di-2-ethylhexylphthalate inhibits the hatching of frog eggs and is bioaccumulated by tadpoles. Environ Toxicol Chem 6:417–422

    Article  CAS  Google Scholar 

  • Latini G (2005) Monitoring phthalate exposure in humans. Clin Chim Acta 361:20–29

    Article  CAS  Google Scholar 

  • Lee SK, Owens GA, Veermachaneni DNR (2005) Exposure to low concentrations of di-n-butyl phthalate during embryogenesis reduces survivability and impairs development of Xenopus laevis frogs. J Toxicol Environ Health Part A 68:763–772

    Article  CAS  Google Scholar 

  • Li J, Wang G (2015) Airborne particulate endocrine disrupting compounds in China: compositions, size distributions and seasonal variations of phthalate esters and bisphenol A. Atmos Res 154:138–145

    Article  CAS  Google Scholar 

  • Mathieu-Denoncourt J (2014) Lethal and sublethal effects of phthalates in Western clawed frog. Dissertation, Royal Military College of Canada

  • Mathieu-Denoncourt J, de Solla SR, Langlois VS (2015a) Chronic exposures to monomethyl phthalate in Western clawed frogs. Gen Comp Endocrinol 219:53–63

    Article  CAS  Google Scholar 

  • Mathieu-Denoncourt J, Wallace SJ, de Solla SR, Langlois VS (2015b) Plasticizer endocrine disruption: highlighting developmental and reproductive effects in mammals and non-mammalian aquatic species. Gen Comp Endocrinol 219:74–88

    Article  CAS  Google Scholar 

  • Mathieu-Denoncourt J, Martyniuk C, Loughery J, Yargeau V, de Solla S, Langlois V (2016) Lethal and sublethal effects of phthalate diesters on Silurana tropicalis larvae. Environ Toxicol Chem (Epub ahead of print). doi:10.1002/etc.3413

  • Mayer FL, Ellersieck MR (1986) Manual of acute toxicity: interpretation and data base for 410 chemicals and 66 species of freshwater animals. U.S. Fish and Wildlife Service Resources Publication No. 160, Washington, DC

  • Mayer FLJ, Sanders HO (1973) Toxicology of phthalic acid esters in aquatic organisms. Environ Health Perspect 3:153–157

    Article  Google Scholar 

  • McCarthy JF, Whitmore DK (1985) Chronic toxicity of di-n-butyl and di-n-octyl phthalate to Daphnia magna and the fathead minnow. Environ Toxicol Chem 4:167–179

    Article  CAS  Google Scholar 

  • Mihaich EM, Friederich U, Caspers N, Hall AT, Klecka GM, Dimond SS, Staples CA, Ortego LS, Hentges SG (2009) Acute and chronic toxicity testing of bisphenol a with aquatic invertebrates and plants. Ecotoxicol Environ Saf 72:1392–1399

    Article  CAS  Google Scholar 

  • Ohtani H, Miura I, Ichikawa Y (2000) Effects of dibutyl phthalate as an environmental endocrine disruptor on gonadal sex differentiation of genetic males of the frog Rana rugosa. Environ Health Perspect 108:1189–1193

    Article  CAS  Google Scholar 

  • Oka T, Adati N, Shinkai T, Sakuma K, Nishimura T, Kurose K (2003) Bisphenol A induces apoptosis in central neural cells during early development of Xenopus laevis. Biochem Biophys Res Commun 312:877–882

    Article  CAS  Google Scholar 

  • Peng X, Li X (2012) Compound-specific isotope analysis for aerobic biodegradation of phthalate acid esters. Talanta 97:445–449

    Article  CAS  Google Scholar 

  • Persico P, Ambrogi V, Acierno D, Carfagna C (2009) Processability and mechanical properties of commercial PVC plastisols containing low-environmental-impact plasticizers. J Vinyl Addit Technol 15:139–146

    Article  CAS  Google Scholar 

  • Pickford DB, Hetheridge MJ, Caunter JE, Hall AT, Hutchinson TH (2003) Assessing chronic toxicity of bisphenol A to larvae of the african clawed frog (Xenopus laevis) in a flow-through exposure system. Chemosphere 53:223–235

    Article  CAS  Google Scholar 

  • Planelló R, Herrero O, Martínez-Guitarte JL, Morcillo G (2011) Comparative effects of butyl benzyl phthalate (BBP) and di(2-ethylhexyl) phthalate (DEHP) on the aquatic larvae of Chironomus riparius based on gene expression assays related to the endocrine system, the stress response and ribosomes. Aquat Toxicol 105:62–70

    Article  Google Scholar 

  • Rhodes JE, Adams WJ, Biddinger GR, Robillard KA, Gorsuch JW (1995) Chronic toxicity of 14 phthalate esters to Daphnia magna an rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 14:1967–1976

    Article  CAS  Google Scholar 

  • Saillenfait AM, Lagonné I, Leheup B (2001) Effects of mono-n-butyl phthalate on the development of rat embryos: in vivo and in vitro observations. Pharmacol Toxicol 89:104–112

    Article  CAS  Google Scholar 

  • Shen O, Wu W, Du G, Liu R, Yu L, Sun H, Han X, Jiang Y, Shi W, Hu W, Song L, Xia Y, Wang S, Wang X (2011) Thyroid disruption by di-n-butyl phthalate (DBP) and mono-n-butyl phthalate (MBP) in Xenopus laevis. PLoS One 6:e19159

    Article  CAS  Google Scholar 

  • Sone K, Hinago M, Kitayama A, Morokuma J, Ueno N, Watanabe H, Iguchi T (2004) Effects of 17β-estradiol, nonylphenol, and bisphenol-A on developing Xenopus laevis embryos. Gen Comp Endocrinol 138:228–236

    Article  CAS  Google Scholar 

  • Staples CA, Adams WJ, Parkerton TF, Gorsuch JW, Biddinger GR, Reinert KH (1997) Aquatic toxicity of eighteen phthalate esters. Environ Toxicol Chem 16:875–891

    Google Scholar 

  • Staples CA, Guinn R, Kramarz K, Lampi M (2011) Assessing the chronic aquatic toxicity of phthalate ester plasticizers. Hum Ecol Risk Assess 17:1057–1076

    Article  CAS  Google Scholar 

  • Suggatt RH, Foote K (1981) Comprehensive review of acute aquatic toxicity data on phthalate esters. Final Report. Syracuse Research Corporation, Syracuse

  • Suzuki E, Kunimoto M, Nishizuka M, Imagawa M (2004) Evaluation of ability of chemicals to bind frog (Xenopus laevis) estrogen receptor by in vitro binding assay. J Health Sci 50:685–688

    Article  CAS  Google Scholar 

  • Teil MJ, Blanchard M, Dargnat C, Larcher-Tiphagne K, Chevreuil M (2007) Occurrence of phthalate diesters in rivers of the Paris district (France). Hydrol Process 21:2515–2525

    Article  CAS  Google Scholar 

  • USEPA (2013) Estimation Programs Interface Suite™ for Microsoft® Windows, v 4.11. USEPA, Washington, DC

    Google Scholar 

  • Weir SM, Talent LG, Anderson TA, Salice CJ (2014) Unraveling the relative importance of oral and dermal contaminant exposure in reptiles: insights from studies using the Western fence lizard (Sceloporus occidentalis). PLoS One 9:e99666

    Article  Google Scholar 

  • Wirnitzer U, Rickenbacher U, Katerkamp A, Schachtrupp A (2011) Systemic toxicity of di-2-ethylhexyl terephthalate (DEHT) in rodents following four weeks of intravenous exposure. Toxicol Lett 205:8–14

    Article  CAS  Google Scholar 

  • Wofford HW, Wilsey CD, Neff GS, Giam CS, Neff JM (1981) Bioaccumulation and metabolism of phthalate esters by oysters, brown shrimp and sheephead minnows. Ecotoxicol Environ Saf 5:202–210

    Article  CAS  Google Scholar 

  • Zhang M, Sheng Y (2010) An indirect competitive fluorescence immunoassay for determination of dicyclohexyl phthalate in water samples. J Fluoresc 20:1167–1173

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science and Risk Assessment Directorate (2012–2014) of Environment and Climate Change Canada to SdS and VSL, and Canada Research Chair to VSL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerie S. Langlois.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathieu-Denoncourt, J., Wallace, S.J., de Solla, S.R. et al. Influence of Lipophilicity on the Toxicity of Bisphenol A and Phthalates to Aquatic Organisms. Bull Environ Contam Toxicol 97, 4–10 (2016). https://doi.org/10.1007/s00128-016-1812-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-016-1812-9

Keywords

Navigation