Skip to main content

Advertisement

Log in

Fluid signature of the shear zone–controlled Veio de Quartzo ore body in the world-class BIF-hosted Cuiabá gold deposit, Archaean Rio das Velhas greenstone belt, Brazil: a fluid inclusion study

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The world-class Cuiabá gold deposit of the Archaean Rio das Velhas greenstone belt in Brazil is hosted in banded iron formation containing carbonaceous matter and carbonate, within the reclined, isoclinal Cuiabá fold. Mineralised quartz veins are hosted in andesite in the stratigraphic footwall of the banded iron ores and form some of the more recently discovered ore bodies. Fluid inclusion data of the quartz vein–associated “Veio de Quartzo” ore body are obtained from four quartz types (Qz1, Qz2, Qz3, Qz5) in gold-mineralised V1 shear vein and V2 extensional veins, barren V3 extensional vein array, and V4 breccia-style veins, all developed during the Archaean D1 event. Three fluid types are distinguished: (i) aqueous fluids of low salinity (1.8–3.8 wt% NaCl equiv), homogenisation (into liquid) at 220 to 230 °C; (ii) aqueous fluids of moderate salinity (5.3–12.7 wt% NaCl equiv), and homogenisation at 250 to 290 °C; and (iii) aqueous-carbonic fluids of moderate salinity (6.0–15.1 wt% NaCl equiv), with 30–91 mol% CO2, 8–41 mol% CH4 and up to 28 mol% N2 and decrepitation (into vapour) at 280 to 310 °C. Based on an independent pressure estimate, a pressure correction was applied to aqueous fluid inclusions, resulting in minimum trapping temperatures at 360 °C for V1 veins, 330 °C for V2 veins, 300 °C for V3 veins and 270 °C for the late-stage V4 veins. Ion chromatography analyses reveal a Br/Cl ratio of 0.7 × 10−3 in Qz1-V1, from 1.4 to 1.5 × 10−3 in Qz2-V2, 0.3 to 0.4 × 10−3 in Qz3-V3 and 0.7 to 0.9 × 10−3in Qz5-V4 veins. Zinc, Pb and Cu are relatively enriched with ~ 100 to 1000 ppm in aqueous and aqueous-carbonic fluid inclusion assemblages in all vein and quartz types, which is similar to other orogenic gold deposits hosted in the Rio das Velhas greenstone belt. The fluid inclusion data are consistent with a model invoking a metamorphic origin for the mineralising fluid. A two-step model of hydrothermal fluid flow and gold enrichment is suggested to have developed during the Archaean D1 event, with an early, aqueous-carbonic fluid pulse of relatively high temperature (from V1 up to V3) and an evolved, aqueous-carbonic fluid pulse of lower temperature (V4, breccia-style veins). The Rio das Velhas greenstone belt is dominated by regionally metamorphosed metasedimentary rocks, resulting in a complex hydrothermal fluid evolution and related gold mineralisation such as the shear zone–controlled Veio de Quartzo ore body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Allan MM, Yardley BW, Forbes LJ, Shmulovich KI, Banks DA, Shepherd TJ (2005) Validation of LA-ICP-MS fluid inclusion analysis with synthetic fluid inclusions. Am Min 90:1767–1775

    Google Scholar 

  • Andersen T, Austrheim H, Burke EAJ, Elvevold S (1993) N2 and CO2 in deep crustal fluids: evidence from the Caledonides of Norway. Chem Geol 108:113–132

    Google Scholar 

  • Anderson MR, Rankin AH, Spiro B (1992) Fluid mixing in the generation of mesothermal gold mineralisation in the Transvaal Sequence, Transvaal, South Africa. Eur J Mineral 4:933–948

  • AngloGold Ashanti (2018) Resources and Reserves Annual Report 2018, Cuiabá Mine https://www.anglogoldashanti.com/investors/annual-reports/

  • Anhaeusser CR (2014) Archean greenstone belts and associated granitic rocks–a review. J Afr Earth Sci 100:684–732

    Google Scholar 

  • Babinski MF, Chemale JR, Van Schmus WR (1991) Geocronologia Pb/Pb em rochas carbonáticas do Supergrupo Minas, Quadrilátero Ferrífero, Minas Gerais. Congresso Brasil Geoquimica 3:628–631

    Google Scholar 

  • Baltazar O, Zucchetti M (2007) Lithofacies associations and structural evolution of the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero, Brazil: a review of the setting of gold deposits. Ore Geol Rev 32:471–499

    Google Scholar 

  • Bodnar R, Vityk MO (1994) Interpretation of microthermometric data for H2O-NaCl fluid inclusions: fluid inclusions in minerals: methods and applications, Short course, pp 117–130

  • Bodnar RJ, Lecumberri-Sanchez P, Moncada D, Steele-MacInnis M (2014) Fluid inclusions in hydrothermal ore deposits. Treatise on Geochemistry, 2nd edn. Elsevier, Oxford, pp 119–142

    Google Scholar 

  • Böhlke JK, Irwin JJ (1992) Laser microprobe analyses of Cl, Br, I, and K in fluid inclusions: implications for sources of salinity in some ancient hydrothermal fluids. Geochim Cosmochim Acta 56:203–225

    Google Scholar 

  • Borisenko A (1977) Study of the salt composition of solutions in gas-liquid inclusions in minerals by the cryometric method. Sov Geol Geophys 18:11–18

    Google Scholar 

  • Brown PE, Hagemann SG (1995) MacFlinCor and its application to fluids in Archean lode-gold deposits. Geochim Cosmochim Acta 59:3943–3952

    Google Scholar 

  • Burke EAJ (2001) Raman microspectrometry of fluid inclusions. Lithos 55:139–158

    Google Scholar 

  • Cabral AR, Zeh A, Koglin N, Gomes AAS, Viana DJ, Lehmann B (2012) Dating the Itabira iron formation, Quadrilátero Ferrífero of Minas Gerais, Brazil, at 2.65 Ga: depositional U Pb age of zircon from a metavolcanic layer. Precambrian Res 204-205:40–45

    Google Scholar 

  • Craw D, MacKenzie D (2016) Macraes orogenic gold deposit (New Zealand): origin and development of a world class gold mine. Springer. https://doi.org/10.1007/978-3-319-35158-2_7

  • De Ronde CEJ, Der Channer DM, Spooner ETC (1997) Archaean fluids. In: De Wit MJ, Ashwal LD (eds) Greenstone belts. Clarendon Press, Oxford, pp 309–335

    Google Scholar 

  • Diamond LW (1993) Post-metamorphic gold-quartz veins from NW Italy: the composition and origin of the ore fluid. Mineral Mag 57:407–422

    Google Scholar 

  • Dorr JVN (1969) Physiographic, stratigraphic, and structural development of the Quadrilátero Ferrífero. Minas Gerais, Brazil, pp 2330–7102

    Google Scholar 

  • Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289:756–758

    Google Scholar 

  • Fu B, Kendrick MA, Fairmaid AM, Phillips D, Wilson CJ, Mernagh TP (2012) New constraints on fluid sources in orogenic gold deposits, Victoria, Australia. Contrib Mineral Petrol 163:427–447

    Google Scholar 

  • Fusswinkel T, Wagner T, Sakellaris G (2017) Fluid evolution of the Neoarchean Pampalo orogenic gold deposit (E Finland): constraints from LA-ICPMS fluid inclusion microanalysis. Chem Geol 450:96–121

    Google Scholar 

  • Gaboury D (2013) Does gold in orogenic deposits come from pyrite in deeply buried carbon-rich sediments? Insight from volatiles in fluid inclusions. Geology 41:1207–1210

    Google Scholar 

  • Gaboury D (2019) Parameters for the formation of orogenic gold deposits. Appl Earth Sci (Trans Inst Min Metall B). https://doi.org/10.1080/25726838.2019.1583310

  • Garofalo PS, Fricker MB, Günther D, Bersani D, Lottici PP (2014) Physical-chemical properties and metal budget of Au-transporting hydrothermal fluids in orogenic deposits. Geol Soc London Spec Publ 402:71–102

    Google Scholar 

  • Goldfarb RJ, Groves DI (2015) Orogenic gold: common or evolving fluid and metal sources through time. Lithos 233:2–26

    Google Scholar 

  • Goldstein RH, Reynolds TJ (1994) Systematics of fluid inclusions in diagenetic minerals. SEPM short course 31. The Mineralogical Association of Canada, Tulsa

    Google Scholar 

  • Graupner T, Niedermann S, Kempe U, Klemd R, Bechtel A (2006) Origin of ore fluids in the Muruntau gold system: constraints from noble gas, carbon isotope and halogen data. Geochim Cosmochim Acta 70:5356–5370

    Google Scholar 

  • Groves DI, Goldfarb RJ, Gebre-Mariam M, Hagemann S, Robert F (1998) Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol Rev 13:7–27

    Google Scholar 

  • Groves DI, Santosh M, Deng J, Wang Q, Yang L, Zhang L (2019) A holistic model for the origin of orogenic gold deposits and its implications for exploration. Mineral Deposita:1–18. https://doi.org/10.1007/s00126-019-00877-5

  • Guillong M, Meier DL, Allan MM, Heinrich CA, Yardley BW (2008) Appendix A6: SILLS: a MATLAB-based program for the reduction of laser ablation ICP-MS data of homogeneous materials and inclusions. Mineral Assoc Can Short Course 40:328–333

    Google Scholar 

  • Hagemann SG, Brown PE (1996) Geobarometry in Archean lode-gold deposits. Eur J Mineral 8:937–960

    Google Scholar 

  • Hagemann SG, Cassidy KF (2000) Archean orogenic lode gold deposits. Rev Econ Geol 13:9–68

    Google Scholar 

  • Helmstaedt H, Padgham WA (1986) Stratigraphic and structural setting of gold-bearing shear zones in the Yellowknife greenstone belt. Can Inst Min 38:322–345

    Google Scholar 

  • Ho SE, Groves DI, Phillips GN (1985) Fluid inclusions as indicators of the nature and source of fluids and ore depositional conditions for Archaean gold deposits of the Yilgam Block, Western Australia. Trans Geol S S Afr 85:149–158

    Google Scholar 

  • Jacobs GK, Kerrick DM (1981) Methane: an equation of state with application to the ternary system H2O-CO2-CH4. Geochim Cosmochim Acta 45:607–614

    Google Scholar 

  • Jambon A, Déruelle B, Dreibus G, Pineau F (1995) Chlorine and bromine abundance in MORB: the contrasting behaviour of the Mid-Atlantic Ridge and East Pacific Rise and implications for chlorine geodynamic cycle. Chem Geol 126:101–117

    Google Scholar 

  • Klemm L, Pettke T, Graeser S, Mullis J, Kouzmanov K (2004) Fluid mixing as the cause of sulphide precipitation at Albrunpass, Binn Valley, Central Alps. Swiss Bull Mineral Petrol 84:189–212

    Google Scholar 

  • Klemm LM, Pettke T, Heinrich CA, Campos E (2007) Hydrothermal evolution of the El Teniente deposit, Chile: porphyry Cu-Mo ore deposition from low-salinity magmatic fluids. Econ Geol 102:1021–1045

    Google Scholar 

  • Kojonen K, Johanson B, O’Brien HE, Pakkanen L (1993) Mineralogy of gold occurrences in the late Archean Hattu schist belt, Ilomantsi, eastern Finland. Spec Pap Geological Survey of Finland 17:233–271

    Google Scholar 

  • Kresse C (2018) Isotopic, fluid inclusion and LA-ICP-MS studies on the world-class BIF hosted Cuiabá gold deposit, Rio das Velhas greenstone belt, Quadrilátero Ferrífero, MG: implications for the mineralizing fluid reservoirs. Dissertation, Universidade Federal de Minas Gerais

  • Kresse C, Lobato LM, Hagemann SG, Figueiredo e Silva RC (2018) Sulfur isotope and metal variations in sulfides in the BIF-hosted orogenic Cuiabá gold deposit, Brazil: implications for the hydrothermal fluid evolution. Ore Geol Rev 98:1–27

    Google Scholar 

  • Ladeira EA (1991) Genesis of gold in QuadriláteroFerrífero: a remarkable case of permanency, recycling and inheritance: a tribute to DjalmaGuimarães, Pierre Routhier and Hans Ramberg. Brazil Gold 91:11–30

    Google Scholar 

  • Large RR, Bull SW, Maslennikov VVA (2011) Carbonaceous sedimentary source-rock model for Carlin-type and orogenic gold deposits. Econ Geol 106:331–358

    Google Scholar 

  • Leisen M, Boiron MC, Richard A, Dubessy J (2012) Determination of Cl and Br concentrations in individual fluid inclusions by combining microthermometry and LA-ICP-MS analysis: implications for the origin of salinity in crustal fluids. Chem Geol 330:197–206

    Google Scholar 

  • Lobato LM, Vieira FWR, Ribeiro-Rodrigues LC, Pereira LM, Menezes MG, Junqueira PA, Pereira SL (1998) Styles of hydrothermal alteration and gold mineralization associated with the Nova Lima Group, Quadrilátero Ferrífero: part II, the Archean mesothermal gold-bearing hydrothermal system. Braz J Geol 28:355–366

    Google Scholar 

  • Lobato LM, Ribeiro-Rodrigues LC, Zucchetti M, Noce CM, Baltazar O, da Silva L, Pinto C (2001a) Brazil’s premier gold province. Part I: the tectonic, magmatic, and structural setting of the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero. Mineral Deposita 36:228–248

    Google Scholar 

  • Lobato LM, Ribeiro-Rodrigues LC, Vieira F (2001b) Brazil's premier gold province. Part II: geology and genesis of gold deposits in the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero. Mineral Deposita 36:249–277

    Google Scholar 

  • Lobato LM, Ribeiro-Rodrigues LC, Costa MNS, Martins R, Lehne E, Alves JV, Tassinari CG, Vieira FWR, Biasi EE, Silva RCF, Pereira VCA, Noce CM (2001c) Geologia do depósito de ouro Cuiabá, Quadrilátero Ferrífero, Minas Gerais, Caracterização de depósitos auríferos em distritos minerais brasileiros, Departamento Nacional da Produção Mineral/Agência para o Desenvolvimento Tecnológico da Indústria Mineral Brasileira, pp 3–77

  • Lobato LM, Santos JOS, McNaughton N, Fletcher I, Noce CM (2007) U-Pb SHRIMP monazite ages of the giant Morro Velho and Cuiabá gold deposits, Rio das Velhas greenstone belt, Quadrilátero Ferrífero, Minas Gerais, Brazil. Ore Geol Rev 32:674–680

    Google Scholar 

  • Lobato LM, Renger FE, Silva RCF, Rosière CA, Baars FJ, Rolim VK (2014) Metalogênese do setor meridional do Cráton São Francisco. In: Silva MG, MBR N, Jost H, Kuyumjian RM (eds) Metalogênese das Províncias Tectônicas Brasileiras. Companhia de Pesquisas de Recursos Minerais, Brasília, Brazil, Belo Horizonte, pp 119–140

    Google Scholar 

  • Lüders V, Romer RL, Cabral AR, Schmidt C, Banks DA, Schneider J (2005) Genesis of itabirite-hosted au-Pd-Pt-bearing hematite-(quartz) veins, Quadrilátero Ferrífero, Minas Gerais, Brazil: constraints from fluid inclusion infrared microthermometry, bulk crush-leach analysis and U-Pb systematics. Mineral Deposita 40:289–306

    Google Scholar 

  • Machado N, Schrank A, Abreu FD, Knauer LG, Almeida-Abreu PA (1989) Resultados preliminares da geocronologia U-Pb na Serra do Espinhaço Meridional. Boletim do Núcleo Minas Gerais-SBG 10:171–174

    Google Scholar 

  • Marsala A, Wagner T, Wälle M (2013) Late-metamorphic veins record deep ingression of meteoric water: a LA-ICPMS fluid inclusion study from the fold-and-thrust belt of the Rhenish Massif, Germany. Chem Geol 351:134–153

    Google Scholar 

  • Martins BS, Lobato LM, Rosière CA, Hagemann SG, Santos JOS, Villanova FLDSP, Silva RCF, Ávila Lemos LH (2016) The Archean BIF-hosted Lamego gold deposit, Rio das Velhas greenstone belt, Quadrilátero Ferrífero: evidence for Cambrian structural modification of an Archean orogenic gold deposit. Ore Geol Rev 72:963–988

    Google Scholar 

  • McCuaig TC, Kerrich R (1998) P-T-t-deformation and fluid characteristics of lode gold deposits: evidence from alteration systematics. Ore Geol Rev 12:381–453

    Google Scholar 

  • Mernagh TP, Bastrakov EN, Zaw K, Wygralak AS, Wyborn LAI (2007) Comparison of fluid inclusion data and mineralization processes for Australian orogenic gold and intrusion-related gold systems. Acta Petrol Sin 23:21–32

    Google Scholar 

  • Morales MJ, Silva RCF, Lobato LM, Gomes SD, Gomes CC, Banks DA (2016) Metal source and fluid-rock interaction in the Archean BIF-hosted Lamego gold mineralization: microthermometric and LA-ICP-MS analyses of fluid inclusions in quartz veins, Rio das Velhas greenstone belt, Brazil. Ore Geol Rev 72:510–531

    Google Scholar 

  • Moreira H, Lana C, Nalini HA (2016) The detrital zircon record of an Archean convergent basin in the southern São Francisco Craton, Brazil. Precambrian Res 275:84–99

    Google Scholar 

  • Muramatsu Y, Wedepohl KH (1998) The distribution of iodine in the earth's crust. Chem Geol 147:201–216

    Google Scholar 

  • Noce CM (2013) Geochronology of the Quadrilátero Ferrífero: a review. Rev Geonomos 8:15–23

    Google Scholar 

  • Noce CM, Zuccheti M, Baltazar O, Armstrong R, Dantas E, Renger FE, Lobato LM (2005) Age of felsic volcanism and the role of ancient continental crust in the evolution of the Neoarchean Rio das Velhas Greenstone belt (Quadrilátero Ferrífero, Brazil): U-Pb zircon dating of volcaniclastic greywackes. Precambrian Res 141:67–82

    Google Scholar 

  • Noce CM, Tassinari CC, Lobato LM (2007) Geochronological framework of the Quadrilátero Ferrífero, with emphasis on the age of gold mineralization hosted in Archean greenstone belts. Ore Geol Rev 32:500–510

    Google Scholar 

  • Oliver NH, Thomson B, Freitas-Silva FH, Holcombe RJ, Rusk B, Almeida BS, Faure K, Davidson GR, Esper EL, Guimarães PJ, Dardenne MA (2015) Local and regional mass transfer during thrusting, veining, and boudinage in the genesis of the giant shale-hosted Paracatu gold deposit, Minas Gerais, Brazil. Econ Geol 110:1803–1834

    Google Scholar 

  • Passchier C (2001) Flanking structures. J Struct Geol 23:951–962

    Google Scholar 

  • Phillips GN, Powell R (2010) Formation of gold deposits: a metamorphic devolatilization model. J Metamorph Geol 28:689–718

    Google Scholar 

  • Pitcairn IK, Teagle DAH, Craw D, Olivo GR, Kerrich R, Brewer TS (2006) Sources of metals and fluids in orogenic gold deposits: insights from the Otago and Alpine Schists, New Zealand. Econ Geol 101:1525–1546

    Google Scholar 

  • Potter RW (1977) Pressure corrections for fluid-inclusion homogenization temperatures based on the volumetric properties of the system NaCl-H2O. J Res U S Geol Surv 5:503–607

    Google Scholar 

  • Ramboz C, Pichavant M, Weisbrod A (1982) Fluid immiscibility in natural processes: use and misuse of fluid inclusion data: II. Interpretation of fluid inclusion data in terms of immiscibility. Chem Geol 37:29–48

    Google Scholar 

  • Rauchenstein-Martinek K, Wagner T, Wälle M, Heinrich CA (2014) Gold concentrations in metamorphic fluids: a LA-ICPMS study of fluid inclusions from the Alpine orogenic belt. Chem Geol 385:70–83

    Google Scholar 

  • Rauchenstein-Martinek K, Wagner T, Wälle M, Heinrich CA, Arlt T (2016) Chemical evolution of metamorphic fluids in the Central Alps, Switzerland: insight from LA-ICP-MS analysis of fluid inclusions. Geofluids 16:877–908

    Google Scholar 

  • Ribeiro Y, Silva RCF, Lobato LM, Lima LC, Rios FJ, Hagemann SG, Cliff J (2015) Fluid inclusion and sulfur and oxygen isotope studies on quartz-carbonate-sulfide veins of the Carvoaria Velha deposit, Córrego do Sítio gold lineament, Quadrilátero Ferrífero, Minas Gerais, Brazil. Ore Geol Rev 67:11–33

    Google Scholar 

  • Ribeiro-Rodrigues LC(1998) Gold mineralization in Archean banded iron-formation of the QF, Minas Gerais, Brazil-The Cuiabá Mine. Dissertation, RTWH Aachen

  • Ribeiro-Rodrigues LC, de Oliveira CG, Friedrich G (2007) The Archean BIF-hosted Cuiabá Gold deposit, Quadrilátero Ferrífero, Minas Gerais, Brazil. Ore Geol Rev 32:543–570

    Google Scholar 

  • Ridley JR, Diamond LW (2000) Fluid chemistry of orogenic lode gold deposits and implications for genetic models. Rev Econ Geol 13:141–162

    Google Scholar 

  • Robert F, Poulsen KH (2001) Vein formationand deformation in greenstone gold deposits, in Richards JP, Tosdal RM, Structural Controls on Ore Genesis: Society of Economic Geologists, Rev Econ Geol 14:111–155

  • Roedder E (1984) Fluid inclusions: Washington. DC, MSA. Rev Mineral 12:644

    Google Scholar 

  • Schindler C, Hagemann SG, Banks D, Mernagh T, Harris AC (2016) Magmatic hydrothermal fluids at the sedimentary rock-hosted, intrusion-related Telfer gold-copper deposit, Paterson Orogen, Western Australia: pressure-temperature-composition constraints on the ore-forming fluids. Econ Geol 111:1099–1126

    Google Scholar 

  • Schrank A, Machado N (1996) Idades U-Pb em monazitas e zircões das minas de Morro Velho e Passagem de Mariana-Quadrilátero Ferrífero (MG). In SBG Congresso Brasileiro de Geologia 39:470–472

  • Seo JH, Guillong M, Heinrich CA (2012) Separation of molybdenum and copper in porphyry deposits: the roles of sulfur, redox, and pH in ore mineral deposition at Bingham Canyon. Econ Geol 107:333–356

    Google Scholar 

  • Spear FS (1995) Metamorphic phase equilibria and pressure-temperature-time paths, Washington. MinSoc Am, pp 799

  • Sterner SM, Bodnar RJ (1984) Synthetic fluid inclusions in natural quartz I. Compositional types synthesised and applications to experimental geochemistry. Geochim Cosmochim Acta 48:2659–2668

    Google Scholar 

  • Taylor BE (1987) Stable isotope geochemistry of ore-forming fluids. Min Assoc Can, Short Course Handbook 13:337–445

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific Publications, pp 312

  • Toledo C (1997) Controle estrutural da mineralizacão aurifera na mina de Cuiabá, setor noroeste do Greenstone Belt Rio das Velhas, Quadrilátero Ferrífero. Dissertation, Universidade Estadual de Campinas

  • Vial D (1980) Mapeamento Geologico do Nivel3 da mina de Cuiabá, Mineração Morro Velho. Internal Report

  • Vieira FWR (1988) Processos epigenéticos da formação dos depósitos auríferos e zonas de alteração hidrotermal do Grupo Nova Lima, Quadrilátero Ferrífero, Minas Gerais. SBG Congresso Brasileiro da Geologia, Belém 1:76–86

  • Vieira FWR (1991) Texturesand processes ofhydrothermalalterationandmineralization in the Nova Lima Group, Minas Gerais, Brazil. Brazil Gold 91:319–327

    Google Scholar 

  • Vitorino LA (2017) Mineralização aurífera associada aos veios quartzo-carbonáticos hospedados na unidade máfica basal da jazida Cuiabá, Greenstone belt Rio das Velhas, Minas Gerais, Brasil. Dissertation, Universidade Federal de Minas Gerais

  • Wagner T, Fusswinkel T, Wälle M, Heinrich CA (2016) Microanalysis of fluid inclusions in crustal hydrothermal systems using laser ablation methods. Elements 12:323–328

    Google Scholar 

  • Wilkinson JJ (2001) Fluid inclusions in hydrothermal ore deposits. Lithos 55:229–272

    Google Scholar 

  • Wilkinson JJ, Stoffell B, Wilkinson CC, Jeffries TE, Appold MS (2009) Anomalously metal-rich fluids form hydrothermal ore deposits. Science 323:764–767

    Google Scholar 

  • Xavier RP, Toledo CLB, Taylor B, Schrank A (2000) Fluid evolution and gold deposition at the Cuiabá mine, SE Brazil: fluid inclusions and stable isotope geochemistry of carbonates. Rev Bras Geogr 30:337–341

    Google Scholar 

  • Yardley BWD (2005) Metal concentrations in crustal fluids and their relationship to ore formation, 100th anniversary special paper. Econ Geol 100:613–632

  • Yardley BWD, Bodnar RJ (2014) Fluids in the continental crust. Geochem Perspect 3:1–127

    Google Scholar 

Download references

Acknowledgments

We thank AngloGold Ashantifor technical and logistic support during field work. Special thanks are due to the staff at the Cuiabá mine, in particular, Frederico Lana Figueiredo. We acknowledge Maria Sylvia Dantas, F. Javier Rios, at the Centro de Desenvolvimento da Tecnologia Nuclear as well as Luis Garcia and Márcio M. da Silva Jr. at the Centro de Microscopia at the Federal University of Minas Gerais for analytical support. We acknowledge comments on the manuscript by Vassily Khouri and Breno S. Martins. We thank two reviewers and the associated editor whose comments and suggestions improved an earlier version of the manuscript.

Funding

This study was made possible by research grants from the Conselho Nacional de Pesquisa Científica e Tecnológica to L.M. Lobato and R.C. Figueiredo e Silva. AngloGold Ashanti provided additional financial supported for the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolin Kresse.

Additional information

Editorial handling: T. Monecke

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research forms part of the PhD thesis by the first author at the Federal University of Minas Gerais, Brazil.

Electronic supplementary materials

ESM 1

Photographs of mineralised host rocks at Cuiabá. a Sampled drill core section of sulfidised andesite (Level 17 of the Fonte Grande Sul ore body, drill core 03A, 1414.70–1414.84). b Sampled drill core section of sulfidised carbonaceous pelite (Level 17 of the Fonte Grande Sul ore body, drill core 009, 1378.24–1378.40). c Sampled drill core section of sulfidised BIF ((Level 17 of the Fonte Grande Sul ore body, drill core 03A, 1619.6–1619.85). d Stope view of sulfidised BIF (Level 15, Galinheiro ore body) (PNG 1737 kb)

High Resolution Image (TIF 7953 kb)

ESM 2

Examples of Representative FIAsof V3 and V4 vein types of theVeio de Quartzoore body.a-c Qz3-V3 extensional vein arrays displaying an internal trail of two-phase, aqueous fluid inclusions (FIA 6) and two-phase, isolated aqueous-carbonic fluid inclusion (FIA 4B). d-g Qz5-V4 late-stage veins, showing two phase, grouped, aqueous fluid inclusions (FIA 12A),individual aqueous-carbonic fluid inclusions (FIA 12B) and two phase, grouped, aqueous fluid inclusions (FIA 14). Photomicrographs taken under transmitted light (JPG 18573 kb)

ESM 3

Raman spectra of individual fluid inclusions. a Raman spectra of FIAs trapped in Qz1-V1 shear veins. b Raman spectra of FIAs trapped in Qz3-V3 extensional vein arrays (PNG 204 kb)

High Resolution Image (TIF 66812 kb)

ESM 4

Arsenic and gold composition (in ppm) of aqueous fluid inclusions trapped in quartz of V1 shear, V2 extensional and V4 late-stage veins measured by laser ablation-inductively coupled plasma-mass spectroscopy (DOCX 14 kb)

ESM 5

Average laser ablation-inductively coupled plasma-mass spectroscopy concentration data (in ppm) for aqueous and aqueous-carbonic FIAs trapped in quartz (Qz1, Qz2, Qz3 and Qz5) of the andesite hosted shear and extensional quartz veins, Veio de Quartzo ore body (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kresse, C., Lobato, L.M., Figueiredo e Silva, R.C. et al. Fluid signature of the shear zone–controlled Veio de Quartzo ore body in the world-class BIF-hosted Cuiabá gold deposit, Archaean Rio das Velhas greenstone belt, Brazil: a fluid inclusion study. Miner Deposita 55, 1441–1466 (2020). https://doi.org/10.1007/s00126-019-00941-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-019-00941-0

Navigation