Skip to main content
Log in

The masquerade of alkaline–carbonatitic tuffs by zeolites: a new global pathfinder hypothesis

  • Letter
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Rapid and progressive reaction of alkaline–carbonatitic tuffs with magmatic and crustal fluids disguises their initial character and origin. This is collectively indicated from (a) the extensive literature on zeolite formation from volcanic glass precursors and alkaline fluids, (b) mineralogical characteristics of specific zeolite species, (c) a comparative review of global distributions of alkaline–carbonatite suites and of zeolite minerals, and (d) new trace element data from zeolite samples. A unifying conceptual model based on tectonic and geological settings, hydrological regime and mineralogy is presented that helps to explain the global distributions and current understanding of occurrences. The model will assist in resource exploration by contributing deeper understanding of the economically important bedded zeolite deposits and further, serve as a guide to the discovery of new alkaline–carbonatitic suites, potentially of economic significance (metallic ores and rare earth elements). It follows that future testing of the hypothesis will impact on models of natural carbon cycling as volcanic contributions of CO2 are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bailey DK, Hampton CM (1990) Volatiles in alkaline magmatism. Lithos 26:157–165

    Article  Google Scholar 

  • Bailey K, Kearnsi S, Mergoil J, Daniel JM, Paterson B (2006) Extensive dolomitic volcanism through the Limagne Basin, central France: a new form of carbonatite activity. Mineral Mag 70:231–236. doi:10.1180/0026461067020327

    Google Scholar 

  • Barker DS, Milliken KL (2008) Cementation of the Footprint Tuff, Laetoli, Tanzania. Can Mineral 46:831–841. doi:10.3749/canmin.46.4.831

    Google Scholar 

  • Barrer RM, Munday BM (1971) Cation exchange reactions of a sedimentary phillipsite. J Chem Soc A -Inorganic Physical Theoretical: 2904–2909. doi:10.1039/j19710002904

  • Bell K (ed) (1989) Carbonatites: genesis and evolution. Unwin Hyman, London

    Google Scholar 

  • Bish D, Ming D (eds) (2001) Natural zeolites: occurrence, properties, applications. Rev. Mineral. Geochem. 45. Mineralogical Society of America and Geochemical Society, Washington DC

  • Brathwaite RL (2003) Geological and mineralogical characterization of zeolites in lacustrine tuffs, Ngakuru, Taupo Volcanic Zone, New Zealand. Clays Clay Miner 51:589–598. doi:10.1346/ccmn.2003.0510601

    Article  Google Scholar 

  • Broxton DE, Bish DL, Warren RG (1987) Distribution and chemistry of diagenetic minerals at Yucca Mountain, Nye County, Nevada. Clays Clay Miner 35:89–110

    Article  Google Scholar 

  • Castor SB (2008) Rare earth deposits of North America. Resour Geol 58:337–347. doi:10.1111/j.1751-3928.2008.00068.x

    Article  Google Scholar 

  • Chipera SJ, Apps JA (2001) Geochemical stability of natural zeolites. In: Bish DL and Ming DW (eds) Natural Zeolites: Occurrence, Properties, Applications. Rev Mineral Geochem 45:117–161

    Article  Google Scholar 

  • Chorlton LB (2007) Generalized geology of the world: bedrock domains and major faults in GIS format. Geol Surv Can Open File 5529

  • Colella C, Mumpton F (eds) (2000) Natural zeolites for the third millenium. Napoli, Italy

  • De’Gennaro M, Adabbo M, Langella M (1995) Hypothesis on the genesis of zeolites in some European volcaniclastic deposits. In: Ming DW, Mumpton FA (eds) Natural Zeolites’ 93 occurrence, properties, use. International Committee on Natural Zeolites, Brockport, pp 51–67

    Google Scholar 

  • De’Gennaro M, Cappelletti P, Langella A, Perrotta A, Scarpati C (2000) Genesis of zeolites in the Neapolitan Yellow Tuff: geological, volcanological and mineralogical evidence. Contrib Mineral Petrol 139:17–35

    Article  Google Scholar 

  • Dyer A (2007) Ion-exchange properties of zeolites and related materials. In: Čejka J, VanBekkum H, Corma A, Schüth F (eds) Introduction to zeolite science and practice, 3rd edn. Elsevier, Amsterdam, pp 525–553

    Chapter  Google Scholar 

  • Dyer A, Jozefowicz LC (1992) The removal of thorium from aqueous-solutions using zeolites. J Radioanal Nucl Chem Artic 159:47–62

    Article  Google Scholar 

  • Dyer A, Zubair M (1998) Ion-exchange in chabazite. Microporous Mesoporous Mater 22:135–150

    Article  Google Scholar 

  • Dyer A, Zaafarany I, Gilmore G (1993) Trace elements in natural zeolites. Anal Proc 30:445–446

    Article  Google Scholar 

  • Ernst RE, Bell K (2010) Large igneous provinces (LIPs) and carbonatites. Miner Petrol 98:55–76. doi:10.1007/s00710-009-0074-1

    Article  Google Scholar 

  • Eugster HP, Surdam RC (1973) Depositional environment of Green River Formation of Wyoming—preliminary report. Geol Soc Am Bull 84:1115–1120

    Article  Google Scholar 

  • Godelitsas A, Gamaletsos P, Roussos-Kotsis M (2010) Mordenite-bearing tuffs from Prassa quarry, Kimolos Island, Greece. Eur J Mineral 22:797–811. doi:10.1127/0935-1221/2010/0022-2058

    Article  Google Scholar 

  • Hay RL (1964) Phillipsite of saline lakes and soils. Am Mineral 49:1366–1387

    Google Scholar 

  • Hay RL, Kyser TK (2001) Chemical sedimentology and paleoenvironmental history of Lake Olduvai, a Pliocene lake in northern Tanzania. Geol Soc Am Bull 113:1505–1521

    Article  Google Scholar 

  • Hay RL, O’Neil JR (1983) Carbonatite tuffs in the Laetoli Beds of Tanzania and the Kaiserstuhl in Germany. Contrib Mineral Petrol 82:403–406

    Article  Google Scholar 

  • Hay RL, Sheppard RA (2001) Occurrence of zeolites in sedimentary rocks: an overview. In: Bish DL, Ming DW (eds) Natural zeolites: occurrence, properties, applications. Rev Mineral Geochem 45:217–234

  • Hazen RM, Bekker A, Bish DL, Bleeker W, Downs RT, Farquhar J, Ferry JM, Grew ES, Knoll AH, Papineau D, Ralph JP, Sverjensky DA, Valley JW (2011) Needs and opportunities in mineral evolution research. Am Mineral 96:953–963. doi:10.2138/am.2011.3725

    Article  Google Scholar 

  • Hornig-Kjarsgaard I (1998) Rare earth elements in sovitic carbonatites and their mineral phases. J Petrol 39:2105–2121

    Article  Google Scholar 

  • Khoury H, Ibrahim K, Ghrir A, Ed-Deen T (2003/4) Zeolites and Zeolitic Tuff in Jordan. Deanship of Academic Research, University of Jordan

  • Kirov G, Šamajova E, Nedialkov R, Stanimirova T (2010) Zeolitization and related processes in acid pyroclastic rocks in Bulgaria and Slovakia. In: Petrov O, Tzvetanova Y (eds) Zeolite 2010 8th International Conference on the Occurrence, Properties and Utilization of Natural Zeolites. International Natural Zeolite Association, Sofia, pp 135–136

    Google Scholar 

  • Langella A, Cappelletti P, De’Gennaro R (2001) Zeolites in closed hydrologic systems. In: Bish DL, Ming DW (eds) Natural zeolites: occurrence, properties, applications. Rev Mineral Geochem 45:235–260

  • Le Bas MJ (2008) Fenites associated with carbonatites. Can Mineral 46:915–932. doi:10.3749/canmin.46.4.915

    Article  Google Scholar 

  • Levander A, Schmandt B, Miller MS, Liu K, Karlstrom KE, Crow RS, Lee CTA, Humphreys ED (2011) Continuing Colorado plateau uplift by delamination-style convective lithospheric downwelling. Nature 472:461–U540. doi:10.1038/nature10001

    Article  Google Scholar 

  • Mitchell RH (2005) Carbonatites and carbonatites and carbonatites. Can Mineral 43:2049–2068

    Article  Google Scholar 

  • Mumpton F (ed) (1981) Mineralogy and geology of natural zeolites. Mineralogical Society of America, Washington

    Google Scholar 

  • Passaglia E, Sheppard RA (2001) The crystal chemistry of zeolites. In: Bish DL, Ming DW (eds) Natural zeolites: occurrence, properties, applications. Rev Mineral Geochem 45:69–116

  • Pekov IV, Chukanov NV (2005) Microporous framework silicate minerals with rare and transition elements: minerogenetic aspects In: Ferraris G, Merlino S (eds) Micro- and mesoporous mineral phases. pp 145–171

  • Rice SB, Papke KG, Vaughan DEW (1992) Chemical controls on ferrierite crystallization during diagenesis of silicic pyroclastic rocks near Lovelock Nevada. Am Mineral 77:314–328

    Google Scholar 

  • Sersale R (1978) Occurences and uses of zeolites in Italy. In: Sand LB, Mumpton FA (eds) Natural zeolites: occurrences, properties, use. Pergamon, Oxford, p 285

    Google Scholar 

  • Stamatakis MG, Hall A, Hein JR (1996) The zeolite deposits of Greece. Miner Deposita 31:473–481. doi:10.1007/s001260050054

    Article  Google Scholar 

  • Stoppa F, Rosatelli G, Wall F, Jeffries T (2005) Geochemistry of carbonatite–silicate pairs in nature: a case history from Central Italy. Lithos 85:26–47. doi:10.1016/j.lithos.2005.03.026

    Article  Google Scholar 

  • Terakado Y, Nakajima W (1995) Characteristics of rare-earth elements, Ba, Sr and Rb abundances in natural zeolites. Geochem J 29:337–345

    Article  Google Scholar 

  • Thompson M, Howarth RJ (1978) A new approach to estimation of analytical precision. J Geochem Explor 9:23–30

    Article  Google Scholar 

  • Torossian A, Mohammadnejad S (2008) Techno-economical study of zeolite resources in south of Syria: IIZC-08-021. Iran International Zeolite Conference (IIZC’08), Tehran, p 26

    Google Scholar 

  • Trummer B, Barth-Wirsching (2000) Formation of zeolites in saline, alkaline-lake deposits: an experimental approach. In: Colella C, Mumpton FA (eds) Natural zeolites for the third millenium. Napoli, Italy, pp 211–225

  • Tschernich RW (1992) Zeolites of the world. Geoscience, Phoenix

    Google Scholar 

  • Tuttle O, Gittins J (eds) (1966) Carbonatites. Wiley, New York

    Google Scholar 

  • Vaughan DEW (ed) (1978) Properties of natural zeolites. Pergamon, Oxford

    Google Scholar 

  • Vitali F, Blanc G, Toulkeridis T, Stille P (2000) Silicate diagenesis in deep-sea sediments from the Tonga forearc (SW Pacific): a strontium and Rare Earth Elements signature. Oceanol Acta 23:281–296

    Article  Google Scholar 

  • Wall F, Zaitsev A (eds) (2004) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province. The Mineralogical Society of Great Britain and Ireland, London

    Google Scholar 

  • Woolley AR, Church AA (2005) Extrusive carbonatites: a brief review. Lithos 85:1–14. doi:10.1016/j.lithos.2005.03.018

    Article  Google Scholar 

  • Woolley AR, Kjarsgaard BA (2008a) Paragenetic types of carbonatite as indicated by the diversity and relative abundances of associated silicate rocks: evidence from a global database. Can Mineral 46:741–752. doi:10.3749/canmin.46.4.741

    Article  Google Scholar 

  • Woolley AR, Kjarsgaard BA (2008b) Carbonatite Occurrences of the world: map and database. Geol Surv Can, Open File 5796. 1 CD-ROM + 1 map

  • Wu CY (2008) Bayan Obo controversy: carbonatites versus iron oxide-Cu-Au-(REE-U). Resour Geol 58:348–354. doi:10.1111/j.1751-3928.2008.00069.x

    Article  Google Scholar 

  • Zaitsev AN, Keller J (2006) Mineralogical and chemical transformation of Oldoinyo Lengai natrocarbonatites, Tanzania. Lithos 91:191–207. doi:10.1016/j.lithos.2006.03.018

    Article  Google Scholar 

Download references

Acknowledgements

This work was inadvertently inspired by a carbonatite seminar session given by Ken Bailey, Alan Woolley and Frances Wall at the University of Manchester in 2008. Laboratory and technical assistance were given by staff of the Universities of Manchester and Wolverhampton; Cath Davies, Al Bewsher, Karl Hennermann (Fig. 1), Richard Hartley (Fig. 3), with resources from Dave Polya and Richard Pattrick. Permissions from Natural Resources/Geological Survey of Canada and preliminary responses to mapping queries from Alan Woolley, Bruce Kjarsgaard and Beth Hillary (Geological Survey of Canada) are acknowledged. S. Strekopytov (The Natural History Museum, London) provided independent analytical verification for the Mudhills sample. Special thanks are due to zeolite sample suppliers, Alan Dyer for relinquishing some of his personal collection, Timothy Teague (University of Berkeley, California) for sub-samples of R. Hay’s Tanzanian rocks, Hani Khoury (University of Jordan, Amman) for the Jordanian samples, S. Soulyman (Damascus Higher Institute of Applied Science and Technology), and commercial zeolite producers. All the zeolite contributors to Mindat.org are acknowledged, without whom the global perspective would have been limited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Campbell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLS 143 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, L.S., Dyer, A., Williams, C. et al. The masquerade of alkaline–carbonatitic tuffs by zeolites: a new global pathfinder hypothesis. Miner Deposita 47, 371–382 (2012). https://doi.org/10.1007/s00126-011-0394-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-011-0394-z

Keywords

Navigation