Skip to main content
Log in

Metamorphism, graphite crystallinity, and sulfide anatexis of the Rampura–Agucha massive sulfide deposit, northwestern India

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Located adjacent to the Banded Gneissic Complex, Rampura–Agucha is the only sulfide ore deposit discovered to date within the Precambrian basement gneisses of Rajasthan. The massive Zn–(Pb) sulfide orebody occurs within graphite–biotite–sillimanite schist along with garnet–biotite–sillimanite gneiss, calc–silicate gneisses, amphibolites, and garnet-bearing leucosomes. Plagioclase–hornblende thermometry in amphibolites yielded a peak metamorphic temperature of 720–780°C, whereas temperatures obtained from Fe–Mg exchange between garnet and biotite (580–610°C) in the pelites correspond to postpeak resetting. Thermodynamic considerations of pertinent silicate equilibria, coupled with sphalerite geobarometry, furnished part of a clockwise PTt path with peak PT of ∼6.2 kbar and 780°C, attained during granulite grade metamorphism of the major Zn-rich stratiform sedimentary exhalative deposits orebody and its host rocks. Arsenopyrite composition in the metamorphosed ore yielded a temperature [and log f(S 2)] range of 352°C (−8.2) to 490°C (−4.64), thus indicating its retrograde nature. Contrary to earlier research on the retrogressed nature of graphite, Raman spectroscopic studies on graphite in the metamorphosed ore reveal variable degree of preservation of prograde graphite crystals (490 ± 43°C with a maximum at 593°C). The main orebody is mineralogically simple (sphalerite, pyrite, pyrrhotite, arsenopyrite, galena), deformed and metamorphosed while the Pb–Ag-rich sulfosalt-bearing veins and pods that are irregularly distributed within the hanging wall calc–silicate gneisses show no evidence of deformation and metamorphism. The sulfosalt minerals identified include freibergite, boulangerite, pyrargyrite, stephanite, diaphorite, Mn–jamesonite, Cu-free meneghinite, and semseyite; the last three are reported from Agucha for the first time. Stability relations of Cu-free meneghinite and semseyite in the Pb–Ag-rich ores constrain temperatures at >550°C and <300°C, respectively. Features such as (1) low galena–sphalerite interfacial angles, (2) presence of multiphase sulfide–sulfosalt inclusions, (3) microcracks filled with galena (±pyrargyrite) without any hydrothermal alteration, and (4) high contents of Zn, Ag (and Sb) in galena, indicate partial melting in the PbS–Fe0.96S–ZnS–(1% Ag2S ± CuFeS2) system, which was critical for metamorphic remobilization of the Rampura–Agucha deposit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Armbuster T, Makovicky E, Berlepsch P, Sejokora J (2003) Crystal structure, cation ordering, and polytypic character of diaphorite, Pb2Ag3Sb3S8, a PbS-based structure. Eur J Mineral 15:137–146

    Article  Google Scholar 

  • Balasubrahmanyan MN (2006) Geology and tectonics of India: an overview. Intl Assoc Gond Res Mem 9:204

    Google Scholar 

  • Berman RG (1992) Thermobarometry using multi-component calculations: a new technique with petrological applications. Can Mineral 75:328–344

    Google Scholar 

  • Beyssac O, Goffe B, Chopin C, Rouzaud JN (2002) Raman spectra of carbonaceous material in metasediments: a new geothermometer. J Metamorph Geol 20:859–871

    Article  Google Scholar 

  • Beyssac O, Bollinger L, Avouac J-P, Goffe B (2004) Thermal metamorphism in the lesser Himalaya of Nepal determined from Raman spectroscopy of carbonaceous material. Earth Planet Sci Lett 225:233–241

    Article  Google Scholar 

  • Bhattacharya A, Mohanty L, Maji A, Sen SK, Raith M (1992) Non-ideal mixing in the phlogopite-annite binary: constraints from experimental data on Mg-Fe partitioning and a reformulation of the biotite-garnet geothermometer. Contrib Mineral Petrol 111:87–93

    Article  Google Scholar 

  • Bryndzia LT, Kleppa OJ (1988) High temperature reaction calorimetry of solid and liquid phase in the quasi-binary system Ag2S-Sb2S3. Geochim Cosmochim Acta 52:167–176

    Article  Google Scholar 

  • Chang LLY, Knowles CR (1977) Phase relations in the systems PbS-Fe1 − x S-Sb2S3 and PbS-Fe1 − x S-Bi2S3. Can Mineral 15:374–379

    Google Scholar 

  • Chang LLY, Li X, Zheng C (1987) The jamesonite–benavidesite series. Can Mineral 25:667–672

    Google Scholar 

  • Compagnini G, Puglisi O, Foti G (1997) Raman spectra of virgin and damaged edge planes. Carbon 35:1793–1797

    Article  Google Scholar 

  • Cook N (1996) Mineralogy of the sulfide deposits at Sulitjelma, northern Norway. Ore Geol Rev 11:303–338

    Article  Google Scholar 

  • Cook NJ, Damian GS (1997) New data on “Plumosite” and other sulfosalt minerals from the Herja hydrothermal vein deposit, Baia Mare District. Geol Carpath 48:387–399

    Google Scholar 

  • Craig JR, Vokes FM (1993) The metamorphism of pyrite and pyritic ores. Mineral Mag 57:3–18

    Article  Google Scholar 

  • Dasgupta A, Sengupta P, Guha D, Fukoka M (1991) A refined garnet-biotite Fe-Mg exchange geothermometer and its application in amphibolites and granulites. Contrib Mineral Petrol 109:130–137

    Article  Google Scholar 

  • Deb M (1992) Lithogeochemistry of rocks around Rampura–Agucha massive zinc sulfide ore body, NW India—implications for the evolution of a Proterozoic ‘aulacogen’. In: Sarkar SC (ed) Metallogeny related to tectonics of the Proterozoic mobile belts. New Delhi, Oxford IBH, pp 1–35

    Google Scholar 

  • Deb M, Sehgal U (1997) Petrology, geothermobarometry and C-O-H-S fluid compositions in the environs of Rampura–Agucha Zn-(Pb) ore deposit, Bhilwara District, Rajasthan. Proc Indian Acad Sci Earth Planet Sci 106:343–356

    Google Scholar 

  • Deb M, Thorpe RI (2004) Geochronological constraints in the Precambrian geology of Rajasthan and their metallogenic implications. In: Goodfellow DM (ed) Sediment-hosted lead-zinc sulfide deposits: attributes and models of some major deposits in India, Australia and Canada. New Delhi, Narosa, pp 246–263

    Google Scholar 

  • Deb M, Thorpe RI, Cumming GL, Wagner PA (1989) Age, source and stratigraphic implications of lead isotope data for conformable sediment-hosted base metal deposits in the Proterozoic Aravalli–Delhi orogenic belt, northwestern India. Precambrian Res 43:1–22

    Article  Google Scholar 

  • Ferry JM, Spear FS (1978) Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contrib Mineral Petrol 66:113–117

    Article  Google Scholar 

  • Frost BR, Mavogenes JA, Tomkins AG (2002) Partial melting of sulfide ore deposits during medium- and high-grade metamorphism. Can Mineral 40:1–18

    Article  Google Scholar 

  • Gandhi SM (2003) Rampura–Agucha zinc-lead deposit. Geol Soc India Mem 55:154

    Google Scholar 

  • Gandhi SM, Paliwal HV, Bhatnagar SN (1984) Geology and ore reserve estimates of Rampura–Agucha Zinc-Lead Deposit, Bhilwara District, Rajasthan. J Geol Soc India 25:689–705

    Google Scholar 

  • Genkin A, Schmidt Sh (1991) Preliminary data for a new thallium mineral from the lead-zinc ore deposit, Agucha, India. N Jb Mineral Abh 163:256–258

    Google Scholar 

  • Giuli G, Paris E, Wu Z, De Panifilis S, Pratesi G, Cipriani C (2005) The structural role of Ag in galena (PbS). A XANES study. Phys Scr T115:387–389

    Article  Google Scholar 

  • Gupta SN, Arora YK, Mathur RK, Iqballuddin, Prasad B, Sahai TN, Sharma SB (1980) Lithostratigraphic map of the Aravalli region, Scale 1:100000. Geological Survey of India, Calcutta

    Google Scholar 

  • Hoda SN, Chang LLY (1975) Phase relations in the pseudoternary system PbS-Cu2S-Sb2S3 and the synthesis of meneghinite. Can Mineral 13:388–393

    Google Scholar 

  • Hodges KV, Spear FS (1982) Geothermometry, geobarometry and the Al2SiO5 triple point at Mt. Moosilauke, New Hampshire. Am Mineral 67:1118–1134

    Google Scholar 

  • Holdaway MJ, Lee SM (1977) Fe-Mg cordierite stability in high-grade pelitic rocks based on experimental, theoretical and natural observations. Contrib Mineral Petrol 63:175–198

    Article  Google Scholar 

  • Holland T, Blundy J (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Mineral Petrol 116:433–447

    Article  Google Scholar 

  • Holler W, Gandhi SM (1995) Silver-bearing sulfosalts from the metamorphosed Rampura–Agucha Zn-Pb-(Ag) Deposit, Rajasthan, India. Can Mineral 33:1047–1057

    Google Scholar 

  • Holler W, Gandhi SM (1997) Origin of tourmaline and oxide minerals from the metamorphosed Rampura Agucha Zn-Pb-(Ag) deposit, Rajasthan, India. Mineral Petrol 60:99–119

    Article  Google Scholar 

  • Holler W, Stumfl EF (1995) Cr-V oxides from the Rampura–Agucha Pb–Zn–(Ag), Rajasthan, India. Can Mineral 33:745–752

    Google Scholar 

  • Holler W, Touret JLR, Stumfl EF (1996) Retrograde fluid evolution at the Rampura–Agucha Pb–Zn–(Ag) deposit, Rajasthan, India. Miner Depos 31:163–171

    Article  Google Scholar 

  • Hutchison MN, Scott SD (1981) Sphalerite geobarometry in the Cu-Fe-Zn-S system. Econ Geol 76:143–153

    Google Scholar 

  • Jambor JL (1975) Synthetic copper free meneghinite. Geol Surv Can Pap 75:71–72

    Google Scholar 

  • Jambor JL, Puziewicz J (1992) New mineral names. Am Mineral 77:1116–1121

    Google Scholar 

  • Kretschmar U, Scott SD (1976) Phase relations involving arsenopyrite in the system Fe-As-S and their application. Can Mineral 14:364–386

    Google Scholar 

  • Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279

    Google Scholar 

  • Kribek B, Hrabal J, Landais P, Hladikova J (1994) The association of poorly ordered graphite, coke and bitumens in greenschist facies rocks of the Ponickla Group, Lugicum, Czech Republic: the result of graphitization of various types of carbonaceous matter. J Metamorph Geol 12:493–503

    Article  Google Scholar 

  • Lueth VW, Megaw PKM, Pingitore NE, Goodell PC (2000) Systematic variation in galena solid-solution compositions at Santa Eulalia, Chihuahua, Mexico. Econ Geol 95:1673–1687

    Article  Google Scholar 

  • Marshall B, Vokes FM, Larocque CL (2000) Regional metamorphic remobilization: upgrading and formation of ore deposits. Rev Econ Geol 11:19–38

    Google Scholar 

  • Mavogenes JA, MacIntosh IW, Ellis DJ (2001) Partial melting of the Broken Hill galena-sphalerite ore: experimental studies in the system PbS-FeS-ZnS-(Ag2S). Econ Geol 96:205–210

    Article  Google Scholar 

  • Mishra B, Pruseth KL (1994) Phase equilibrium study in the system Cu2S-PbS-Sb2S3: nonstoichiometry in sulfosalts and isothermal variation in sulfur fugacity. Contrib Mineral Petrol 118:92–98

    Article  Google Scholar 

  • Mishra B, Upadhyay D, Bernhardt H-J (2006) Metamorphism of the host and associated rocks at the Rajpura–Dariba massive sulfide deposit, Northwestern India. J Asian Earth Sci 26:21–37

    Article  Google Scholar 

  • Mookherjee A (1976) Ores and metamorphism: temporal and genetic relationships. In: Wolf KH (ed) Handbook of stratabound and stratiform ore deposits. vol. 4. Amsterdam, Elsevier, pp 203–260

    Google Scholar 

  • Mozgova NN, Bortnikov NS, Tsepin AI, Borodaev YUS, Vrublevskaja SV, Vyalsov LN, Kuzmina OV, Sivtsov AV (1983) Falkmanite Pb5.4Sb3.6S11, new data and relationship with sulphantimonites of lead (re-examination of type material from Bayerland mine), Bavaria. N Jb Mineral Abh 147:80–98

    Google Scholar 

  • Mukherjee AD, Lahiri S, Bhattacharya HN (1991) Silver bearing sulfosalts from Rampura–Agucha massive sulfide deposit of Rajasthan. J Geol Soc India 37:132–135

    Google Scholar 

  • Naha K, Halyburton RV (1974) Early Precambrian Stratigraphy of central and southern Rajasthan, India. Precambrian Res 1:55–73

    Article  Google Scholar 

  • Naha K, Halyburton RV (1977) Structural pattern and strain history of a fold system in the Precambrian of central Rajasthan, India, I and II. Precambrian Res 4:39–111

    Article  Google Scholar 

  • Naha K, Roy AB (1983) The problem of the Precambrian basement in Rajasthan, Western India. Precambrian Res 19:217–223

    Article  Google Scholar 

  • Nakazawa H, Morimoto N (1971) Phase relations and superstructures of pyrrhotite, Fe1 − x S. Mater Res Bull 6:345–358

    Article  Google Scholar 

  • Negro F, Beyssac O, Goffe B, Saddiq O, Bouybaque NE (2006) Thermal structure of the Alboran Domain in the Rif (northern Morocco) and the Western Betics (southern Spain). Constraints from Raman spectroscopy of carbonaceous material. J Metamorph Geol 24:309–327

    Article  Google Scholar 

  • Nickel EH (1993) Standardization of polytype suffixes. Can Mineral 31:767–768

    Google Scholar 

  • Paliwal HV, Gandhi SM (1983) Rampura–Agucha—a major addition to India’s lead–zinc resources. J Mines Metals Fuels Ind Mining-1982 Ann Rev:154–157

  • Pasteris JD, Wopenka B (1991) Raman spectra of graphite as indicators of degree of metamorphism. Can Mineral 29:1–9

    Google Scholar 

  • Perchuk LL, Lavrent’eva IV (1983) Experimental investigation of exchange equilibria in the system cordierite-garnet-biotite. In: Saxena SK (ed) Kinetics and equilibrium in mineral reactions. New York, Springer, pp 199–239

    Google Scholar 

  • Petersen EU (1995) Solid-solution compositions of sulfide and sulfosalt minerals from Uchucchacua, Peru. Soc Geol Peru Vol Jub Alberto Benavides:243–260

  • Pouchou JL, Pichoir F (1984) A new model for quantitative X-ray microanalyses, part I: application to the analyses of homogenous samples. Rech Aérosp 3:13–36

    Google Scholar 

  • Pruseth KL, Mishra B, Bernhardt HJ (1997) Phase relations in the Cu2S-PbS-Sb2S3 system: an experimental appraisal and application to natural polymetallic sulfide ores. Econ Geol 92:720–732

    Google Scholar 

  • Pruseth KL, Mishra B, Bernhardt HJ (2001) The minerals boulangerite, falkmanite and Cu-free meneghinite: synthesis, new powder diffraction data and stability relations. Eur J Mineral 13:411–419

    Article  Google Scholar 

  • Raja Rao CS (1976) Precambrian sequences of Rajasthan. Misc Publ Geol Surv Ind 23:497–516

    Google Scholar 

  • Ranawat PS, Bhatnagar SN, Sharma NK (1988) Metamorphic character of Rampura–Agucha lead-zinc deposit, Rajasthan. Mem Geol Soc Ind 7:397–410

    Google Scholar 

  • Ray JN (1982) An evaluation of the tectonic framework of Rampura–Agucha zinc-lead deposit, Bhilwara district, Rajasthan. Ind Minerals 34:19–22

    Google Scholar 

  • Rice JM, Ferry JM (1982) Buffering, infiltration and the control of intensive variables during metamorphism. Rev Miner 10:263–326

    Google Scholar 

  • Roy AB, Somani MK, Sharma NK (1981) Aravalli–pre-Aravalli relationship: a study from the Bhinder region, southern Rajasthan. Indian J Earth Sci 8:119–130

    Google Scholar 

  • Scott SD (1973) Experimental calibration of the sphalerite geobarometer. Econ Geol 68:466–474

    Article  Google Scholar 

  • Sengupta T (2001) Metamorphic conditions and ore mineralogy of the massive sulfide deposits at Rampura–Agucha, Rajasthan. Unpublished M.Sc. Dissertation, Indian Institute of Technology, Kharagpur, p 62

  • Sharp TG, Buseck PR (1993) The distribution of Ag and Sb in galena: inclusions versus solid solution. Am Mineral 78:85–95

    Google Scholar 

  • Sharp ZD, Essene EJ, Kelly WC (1985) A re-examination of the arsenopyrite geothermometer: pressure considerations and applications to natural assemblages. Can Mineral 23:517–534

    Google Scholar 

  • Sparks HA, Mavogenes JA (2005) Sulfide melt inclusions as evidence for the existence of a sulfide partial melt at Broken Hill, Australia. Econ Geol 100:773–779

    Article  Google Scholar 

  • Spear FS (1993) Metamorphic phase equilibria and pressure–temperature–time paths. Mineralogical Society of America, Washington, DC, p 799

    Google Scholar 

  • Staff HZL (1992) Rampura–Agucha mine. Min Mag 167:372–375

    Google Scholar 

  • Stanton RL (1972) Ore petrology. McGraw-Hill, New York, p 713

    Google Scholar 

  • Steven G, Prinz S, Rozendaal A (2005) Partial melting of the assemblage sphalerite + galena + pyrrhotite + chalcopyrite + sulfur: implications for high-grade metamorphosed massive sulfide deposits. Econ Geol 100:781–786

    Article  Google Scholar 

  • Sugden TJ, Deb M, Windley BF (1990) The tectonic setting of mineralization in the Proterozoic Aravalli–Delhi orogenic belt, NW India. In: Naqvi SM (ed) Precambrian continental crust and its economic resources. Amsterdam, Elsevier, pp 367–390

    Chapter  Google Scholar 

  • Thompson AB (1976) Mineral reactions in pelitic rocks: I. Prediction of P-T-X (Fe-Mg) phase relations. Am J Sci 276:401–424

    Google Scholar 

  • Tomkins AG (2007) Three mechanisms of ore re-mobilization during amphibolite facies metamorphism at the Mantauban Zn-Pb-Au-Ag deposit. Miner Depos 42:627–637

    Article  Google Scholar 

  • Tomkins AG, Mavogenes JA (2001) Redistribution of gold within arsenopyrite and löllingite during pro- and retrograde metamorphism: application to timing of mineralization. Econ Geol 96:525–534

    Article  Google Scholar 

  • Tomkins AG, Mavogenes JA (2002) Mobilization of gold as a polymetallic melt during pelite Anatexis at the Challenger deposit, South Australia: a metamorphosed archean gold deposit. Econ Geol 97:1249–1271

    Article  Google Scholar 

  • Tomkins AG, Mavogenes JA (2003) Generation of metal-rich felsic magmas during crustal anatexis. Geology 31:765–768

    Article  Google Scholar 

  • Tomkins AG, Pattison DRM, Zaleski E (2004) The Hemlo gold deposit, Ontario: an example of melting and mobilization of a precious metal-sulfosalt assemblage during amphibolite facies metamorphism and deformation. Econ Geol 99:1063–1084

    Article  Google Scholar 

  • Tomkins AG, Frost BR, Pattison DRM (2006) Arsenopyrite melting during metamorphism of sulfide ore deposits. Can Mineral 44:1045–1062

    Article  Google Scholar 

  • Tomkins AG, Pattison DRM, Frost BR (2007) On the initiation of metamorphic sulfide anatexis. J Petrol 48:511–535

    Article  Google Scholar 

  • Toulmin P, Barton PB Jr, Wiggins LB (1991) Commentary on sphalerite geobarometer. Am Mineral 76:1038–1051

    Google Scholar 

  • Urazov GG, Sokolov MA (1983) The system Ag2S-PbS. In: Brandes EA (ed) Metals reference book. 6th edn. Butterworths-Heinemann, London, p 1664

    Google Scholar 

  • Vielzeuf D, Holloway JR (1988) Experimental determination of the fluid-absent melting relations in the pelitic system: consequences of crustal differentiation. Contrib Mineral Petrol 98:257–276

    Article  Google Scholar 

  • Vokes FM (1969) A review of metamorphism of sulfide deposit. Earth Sci Rev 5:99–143

    Article  Google Scholar 

  • Vokes FM (2000) Ores and metamorphism: historical perspectives. Rev Econ Geol 11:1–18

    Google Scholar 

  • Vokes FM, Craig JR (1993) Post-recrystallization mobilisation phenomena in metamorphosed stratabound sulfide ores. Mineral Mag 57:19–28

    Article  Google Scholar 

  • Wopenka B, Pasteris JD (1993) Structural characterization of kerogens to granulite-facies graphite; applicability of Raman microprobe spectroscopy. Am Mineral 78:533–557

    Google Scholar 

  • Wykes JL, Mavogenes JA (2005) Hydrous sulfide melting: experimental evidence for the solubility of H2O in sulfide melts. Econ Geol 100:157–164

    Article  Google Scholar 

Download references

Acknowledgements

The first author is thankful to the Indian National Science Academy and the Deutsche Forschungsgemeinschaft (DFG) for an exchange visit to the Institut für Mineralogie, Ruhr-Universität, Bochum where all the microprobe analyses were carried out. The Raman spectroscopic work was funded by a project (SR/FST/ESII-020/2000) from the Department of Science and Technology, Government of India to the Department of Geology and Geophysics, IIT Kharagpur. The authors thank Craig Johnson, Chris MacFarlane, Associate Editor David Lentz, and Chief Editor Bernd Lehmann for their constructive reviews and invaluable comments, which helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajit Mishra.

Additional information

Editorial handling: D. Lentz

Appendix

Appendix

Table 2 Microprobe analytical data of pertinent minerals from calc–silicate gneiss and amphibolite
Table 3 Microprobe analytical data of garnet and biotite from pelite (sample number 370-12a)
Table 4 Microprobe analytical data of garnet, biotite and plagioclase from pelite (# 370-3) and leucosome (#370-1a)
Table 5 Biotite–garnet geothermometry, based on eight different formulations
Table 6 Representative microprobe analysis and calculated formulae of sulfosalts

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, B., Bernhardt, HJ. Metamorphism, graphite crystallinity, and sulfide anatexis of the Rampura–Agucha massive sulfide deposit, northwestern India. Miner Deposita 44, 183–204 (2009). https://doi.org/10.1007/s00126-008-0208-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-008-0208-0

Keywords