Skip to main content
Log in

Rosia Poieni copper deposit, Apuseni Mountains, Romania: advanced argillic overprint of a porphyry system

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Rosia Poieni deposit is the largest porphyry copper deposit in the Apuseni Mountains, Romania. Hydrothermal alteration and mineralization are related to the Middle Miocene emplacement of a subvolcanic body, the Fundoaia microdiorite. Zonation of the alteration associated with the porphyry copper deposit is recognized from the deep and central part of the porphyritic intrusion towards shallower and outer portions. Four alteration types have been distinguished: potassic, phyllic, advanced argillic, and propylitic. Potassic alteration affects mainly the Fundoaia subvolcanic body. The andesitic host rocks are altered only in the immediate contact zone with the Fundoaia intrusion. Mg-biotite and K-feldspar are the main alteration minerals of the potassic assemblage, accompanied by ubiquitous quartz; chlorite, and anhydrite are also present. Magnetite, pyrite, chalcopyrite and minor bornite, are associated with this alteration. Phyllic alteration has overprinted the margin of the potassic zone, and formed peripheral to it. It is characterized by the replacement of almost all early minerals by abundant quartz, phengite, illite, variable amounts of illite-smectite mixed-layer minerals, minor smectite, and kaolinite. Pyrite is abundant and represents the main sulfide in this alteration zone. Advanced argillic alteration affects the upper part of the volcanic structure. The mineral assemblage comprises alunite, kaolinite, dickite, pyrophyllite, diaspore, aluminium-phosphate-sulphate minerals (woodhouseite-svanbergite series), zunyite, minamyite, pyrite, and enargite (luzonite). Alunite forms well-developed crystals. Veins with enargite (luzonite) and pyrite in a gangue of quartz, pyrophyllite and diaspore, are present within and around the subvolcanic intrusion. This alteration type is partially controlled by fractures. A zonal distribution of alteration minerals is observed from the centre of fractures outwards with: (1) vuggy quartz; (2) quartz + alunite; (3) quartz + kaolinite ± alunite and, in the deeper part of the argillic zone, quartz + pyrophyllite + diaspore; (4) illite + illite-smectite mixed-layer minerals ± kaolinite ± alunite, and e) chlorite + albite + epidote. Propylitic alteration is present distal to all other alteration types and consists of chlorite, epidote, albite, and carbonates. Mineral parageneses, mineral stability fields, and alteration mineral geothermometers indicate that the different alteration assemblages are the result of changes in both fluid composition and temperature of the system. The alteration minerals reflect cooling of the hydrothermal system from >400 °C (biotite), to 300–200 °C (chlorite and illite in veinlets) and to lower temperatures of kaolinite, illite-smectite mixed layers, and smectite crystallization. Hydrothermal alteration started with an extensive potassic zone in the central part of the system that passed laterally to the propylitic zone. It was followed by phyllic overprint of the early-altered rocks. Nearly barren advanced argillic alteration subsequently superimposed the upper levels of the porphyry copper alteration zones. The close spatial association between porphyry mineralization and advanced argillic alteration suggests that they are genetically part of the same magmatic-hydrothermal system that includes a porphyry intrusion at depth and an epithermal environment of the advanced argillic type near the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 A
Fig. 2 A
Fig. 3
Fig. 4A–F
Fig. 5
Fig. 6 A
Fig. 7
Fig. 8
Fig. 9
Fig. 10 A

Similar content being viewed by others

References

  • Arribas A Jr (1995) Characteristics of high-sulfidation epithermal deposits and their relation to magmatic fluids. In: Thompson JFH (ed) Magmas, fluids, and ore deposits. Mineral Assoc Can Short Course, 23:419–454

  • Balintoni I (1994) Structure of the Apuseni Mountains. Romanian J Tectonics Regional Geol 75, Suppl no. 2, pp 51–57

  • Bayliss P (1975) Nomenclature of the trioctahedral chlorites. Can Mineral 13:178–180

    Google Scholar 

  • Borcos M (1976) Geological and metallogenetical elements of the evolution of the Neogene volcanism (Apuseni Mountains). Rev Rom Geol Geoph Geogr Ser Geol 20:85–101

    CAS  Google Scholar 

  • Borcos M (1994) Volcanicity / metallogeny in the South Apuseni Mts. (Metaliferi Mts.). In: Borcos M, Vlad S (eds) IGCP 356, Field trip guide. Plate tectonics and metallogeny in the East Carpathians and Apuseni Mts., Bucharest, pp 32–43

  • Borcos M, Berbeleac I (1983) Tertiary metallogeny in the porphyry copper deposits from Valea Morii and Musariu (Brad area, Metalliferi Mountains). An Inst Geol Geophys, Bucharest LXI, pp 1–12

  • Borcos M, Popescu G, Rosu E (1986) Nouvelles données sur la stratigraphie et l’évolution du volcanisme tertiaire des Monts Métallifères. DS Inst Geol Geophys, Bucharest 70–71(4):245–259

  • Borcos M, Vlad S, Udubasa G, Gabudeanu B (1998) Qualitative and quantitative metallogenetic analysis of the ore genetic units in Romania. Rom J Miner Deposits 78:1–83

    Google Scholar 

  • Bordea S, Stefan A, Borcos M (1979) Abrud. Geological map 74a. Scale 1:50000. Inst Geol Geophys, Bucharest

    Google Scholar 

  • Bostinescu S (1984) Porphyry copper systems in the South Apuseni Mountains, Romania. An Inst Geol Geophys, Bucharest LXIV, pp 163–175

  • Cathelineau M (1988) Cation site occupancy in chlorites and illites as a function of temperature. Clay Miner 23:471–485

    Google Scholar 

  • Cathelineau M, Nieva D (1985) A chlorite solid solution geothermometer: the Los Azufres (Mexico) geothermal system. Contrib Mineral Petrol 91:235–244

    CAS  Google Scholar 

  • Chivas A (1978) Porphyry copper mineralization at the Koloula igneous complex, Guadalcanal Solomon Islands. Econ Geol 73:645–677

    CAS  Google Scholar 

  • Cioflica G, Istrate G, Popescu G, Udubasa G (1966) Contributions to the knowledge of the volcanic product ages from Hartagani-Trestia area, Metaliferi Mountains (in Romanian). Stud Cerc Geol Geophys Geogr Ser Geol 11(1):171–182

    Google Scholar 

  • Damman AH, Kars SM, Touret JLR, Rieffe EC, Kramer JALM, Vis RD, Pintea I (1996) PIXE and SEM analyses of fluid inclusions in quartz crystals from the K-alteration zone of the Rosia Poieni porphyry-Cu deposit, Apuseni Mountains, Romania. Eur J Mineral 8:1081–1096

    Google Scholar 

  • Dumitrescu I, Sandulescu M (1978) Tectonic map of Romania. Scale 1:1000000. Inst Geol Geophys, Bucharest

    Google Scholar 

  • Eberl DD, Srodon J, Lee M, Nadeau PH, Northrop HP (1987) Sericite from the Silverton caldera, Colorado: correlation among structure, composition, origin, and particle thickness. Am Mineral 72:914–934

    CAS  Google Scholar 

  • Foster MD (1962) Interpretation of the composition and a classification of the chlorites. US Geol Surv Prof Pap 414A:1–33

    Google Scholar 

  • Ghitulescu TP, Socolescu M (1941) Etude géologique et minière des Monts Métallifères. An Inst Geol Rom Bucharest XXI, pp 1–284

  • Guidotti CV (1984) Micas in metamorphic rocks. Rev Mineral 13:357–467

    CAS  Google Scholar 

  • Harvey CC, Browne PRL (1991) Mixed-layer clay geothermometry in the Wairakei geothermal field, New Zealand. Clays Clay Miner 39:614–621

    CAS  Google Scholar 

  • Hayama Y (1959) Some considerations on the color of the biotite and its relation to metamorphism. J Geol Soc Jpn 65:21–30

    CAS  Google Scholar 

  • Hayba DO, Bethke PM, Heald P, Foley NK (1985) Geologic, mineralogic, and geochemical characteristics of volcanic-hosted epithermal precious-metal deposits. Rev Econ Geol 2:129–167

    Google Scholar 

  • Heald P, Foley NJ, Hayba DO (1987) Comparative anatomy of volcanic-hosted epithermal deposits: acid-sulfate and adularia-sericite types. Econ Geol 82:1–26

    CAS  Google Scholar 

  • Hedenquist JW, Matsuhisa Y, Izawa E, White NC, Giggenbach WF, Aoki M (1994) Geology, geochemistry, and origins of high sulfidation Cu-Au mineralisation in the Nansatsu District, Japan. Econ Geol 89:1–30

    CAS  Google Scholar 

  • Hedenquist JW, Izawa E, Arribas A, White NC (1996) Epithermal gold deposits: styles, characteristics, and exploration. Res Geol Spec Publ 1, 17 pp

    Google Scholar 

  • Hedenquist JW, Arribas A Jr, Reynolds TJ (1998) Evolution of intrusion-centred hydrothermal systems: Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Econ Geol 93:373–404

    CAS  Google Scholar 

  • Helgeson HC, Delany JM, Nesbitt WE, Bird DK (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Am J Sci 278-A:1–229

    Google Scholar 

  • Hemley JJ, Jones WR (1964) Chemical aspects of hydrothermal alteration with emphasis on hydrogen metasomatism. Econ Geol 59:538–569

    CAS  Google Scholar 

  • Hemley JJ, Hostetller PB, Gude AJ, Mountjoy WT (1969) Some stability relations of alunite. Econ Geol 64:599–613

    CAS  Google Scholar 

  • Hemley JJ, Montoya JW, Marinenko JW, Luce RW (1980) Equilibria in the system Al2O3-SiO2-H2O and some general implications for alteration/mineralization processes. Econ Geol 75:210–228

    CAS  Google Scholar 

  • Hower J, Mowatt TC (1966) The mineralogy of illites and mixed-layer illite/montmorillonite. Am Mineral 31:825–854

    Google Scholar 

  • Ianovici V, Giusca D, Ghitulescu TP, Borcos M, Lupu M, Bleahu M, Savu H (1969) Geological evolution of the Apuseni Mountains (in Romanian). Acad Rom, Bucharest, 741 pp

  • Ianovici V, Borcos M, Bleahu M, Patrulius D, Lupu M, Dimitrescu R, Savu H (1976) The geology of the Apuseni Mountains (in Romanian, French abstract). Acad Rom, Bucharest, 631 pp

  • Ianovici V, Vlad S, Borcos M, Botinescu S (1977) Alpine porphyry copper mineralization of West Romania. Miner Deposita 12:307–317

    CAS  Google Scholar 

  • Ionescu O (1974) Disseminated copper mineralization from Rosia Poieni (Alba district) (Romania). Stud Cerc Geol Geophys Geogr Ser Geol 19:77–84

    Google Scholar 

  • Ionescu O, Soare C, Gheroghiu M (1975) Contributions to the study of Rosia Poieni ore deposit (Metalliferi Mountains). Hypogene alterations (Romania). Stud Cerc Geol Geophys Geogr Ser Geol 20(2):159–170

    CAS  Google Scholar 

  • Iwao S (1962) Silica and alunite deposits of the Ugusu mine; a geochemical consideration on an extinct geothermal area in Japan. Jpn J Geol Geogr 33:131–144

    Google Scholar 

  • Iwao S (1963) Further considerations on the rock alteration in Ugusu, an extinct geothermal area. Jpn J Geol Geogr 34:81–91

    Google Scholar 

  • Le Bel L (1979) Etudes des conditions de formation du porphyre cuprifère de Cerro Verde—Santa Rosa (Pérou méridional) pris dans son contexte plutonique. PhD Thesis, Lausanne University, BRGM, Orléans, France, 160 pp

  • Leroy JL, Cathelineau M (1982) Les minéraux phylliteux dans les gisements hydrothermaux d’uranium. I. Cristallochimie des micas hérités et néoformés. Bull Minéral 105:99–109

    Google Scholar 

  • McDowel SD, Elders WA (1980) Authigenic layer silicate minerals in borehole Elmer 1, Salton Sea geothermal field, California, USA. Contrib Mineral Petrol 74:293–310

    Google Scholar 

  • McLeod RL, Stanton RL (1984) Phyllosilicates and associated minerals in some Paleozoic stratiform sulfide deposits of Southeastern Australia. Econ Geol 79:1–22

    CAS  Google Scholar 

  • Meyer C, Hemley JJ (1967) Wall rock alteration. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Holt, Rinehart and Winston, New York, pp 166–235

  • Milu V (1999) Hydrothermal alteration associated Bolcana and Rosia Poieni porphyry-copper deposits (Southern Apuseni Mountains) (in Romanian). PhD Thesis, Bucharest University, 250 pp

  • Pintea I (1993) Microthermometry of the hydrosaline melt inclusions from porphyry-copper ore deposits (Apuseni Mountains, Romania). Arch Mineral XLIX:165–167

    Google Scholar 

  • Pintea I (1995) Fluid inclusion evidence of magmatic immiscibility between hydrous salt melt and silicate melt as a primary source of metals in porphyry-copper systems from Apuseni Mountains, Romania. Bol Soc Espagnola Mineralogica 18–1:184–186

    Google Scholar 

  • Pintea I (1996) New aspects of fluid phase evolution during the porphyry copper ore deposit from South Apuseni as seen in fluid inclusions. An Inst Geol Rom Bucharest 69, suppl 1, p 166

  • Reyes AG (1990) Petrology of Philippine geothermal systems and application of alteration mineralogy of their assessment. J Volcanol Geotherm Res 43:279–310

    CAS  Google Scholar 

  • Rose AW, Burt DM (1979) Hydrothermal alteration. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York: pp 171–235

  • Rosu E, Pecskay Z, Stefan A, Popescu G, Panaiotu CE (1997) The evolution of Neogene volcanism in the Apuseni Mountains (Romania). Constraints from new K-Ar data. Geologica Carpathica 48:353–359

    CAS  Google Scholar 

  • Rosu E, Nedelcu L, Udubasa G, Pintea I, Ivascanu PM (2000a) The Neogene ore-deposits of the South Apuseni Mountains, Romania. ABCD-GEODE 2000 Workshop, Borovets, Bulgaria, abstr, p 72

  • Rosu E, Panaiotu C, Pecskay Z, Panaiotu CE (2000b) Age, geochemistry, and evolution of Neogene magmatism in the Apuseni Mountains, Romania. ABCD-GEODE 2000 Workshop, Borovets, Bulgaria, p 73

  • Rye OR, Bethke JW, Wasserman MD (1992) The stable isotope geochemistry of acid sulfate alteration. Econ Geol 87:225–262

    CAS  Google Scholar 

  • Sandulescu M (1984) Geotectonics of Romania (in Romanian). Editura Tehnica, Bucharest, 334 pp

  • Sillitoe RH (1983) Enargite-bearing massive sulfide deposits high in porphyry copper systems. Econ Geol 78:348–352

    Google Scholar 

  • Stoffregen RE (1987) Genesis of acid-sulfate alteration and Au-Cu-Ag mineralization at Summitville, Colorado. Econ Geol 82:1575–1591

    CAS  Google Scholar 

  • Stoffregen RE, Alpers CN (1987) Woodhouseite and svanbergite in hydrothermal ore deposits: products of apatite destruction during advanced argillic alteration. Can Mineral 25:201–211

    CAS  Google Scholar 

  • Velde B (1985) Clay minerals: a physico-chemical explanation of their occurrences. Dev Sedimentol 40:427

    Google Scholar 

  • Vlad S (1981) Monoascendent and polyascendent porphyry copper systems. Rev Roum Geol Geoph Geogr Ser Geol 25:95–100

    Google Scholar 

  • Vlad S, Borcos M (1996) Alpine porphyry copper models in Romania. Terranes of Serbia: 371–375

    Google Scholar 

Download references

Acknowledgements

This study forms part of a Ph.D. research program carried out by V.M. at Bucharest University, Romania. Financial support for the research was provided by host institutions of the authors and by the European Science Foundation (a GEODE visiting grant to VM from Geological Institute of Romania to Henri Poincaré University-Nancy 1). We thank Minvest S.A. Company and MINEXFOR S.A. (Deva) for providing access to the deposit. Special thanks are extended to M. Borcos, P. Piantone, and E. Marcoux for their helpful suggestions and to J.W. Hedenquist, J.M. Guilbert, and B. Lehmann for their fruitful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Léon Leroy.

Additional information

Editorial handling: B. Lehmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milu, V., Milesi, JP. & Leroy, J.L. Rosia Poieni copper deposit, Apuseni Mountains, Romania: advanced argillic overprint of a porphyry system. Miner Deposita 39, 173–188 (2004). https://doi.org/10.1007/s00126-003-0390-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-003-0390-z

Keywords

Navigation