Skip to main content
Log in

BrKCS6 mutation conferred a bright glossy phenotype to Chinese cabbage

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

BrKCS6 encoding 3-ketoacyl-CoA synthases was cloned through MutMap and KASP analysis, and its function was verified via allelic mutants in Chinese cabbage.

Abstract

Bright and glossy green appearance is an attractive commodity character for leafy vegetables and is mainly caused by the absence of epicuticular wax crystals. In this study, two allelic epicuticular wax crystal deficiency mutants, wdm9 and wdm10, were obtained from an EMS mutagenesis population of Chinese cabbage (Brassica rapa L. ssp. pekinensis). Genetic analysis revealed that the mutant phenotype was controlled by a recessive nuclear gene. BrKCS6 encoding 3-ketoacyl-CoA synthases was identified as the candidate gene by MutMap and KASP analysis. A SNP (G to A) on BrKCS6 in wdm9 led to the amino acid substitution from serine (S) to phenylalanine (F), and another SNP (G to A) in wdm10 resulted in the amino acid substitution from serine (S) to leucine (L). Both SNPs are located in the ACP_syn_III_C conserved domain, corresponding to two highly conserved sites among BrKCS6 and its homologs. These two amino acid substitutions changed the secondary structure and the three-dimensional structure of BrKCS6 protein. qRT-PCR results showed that the relative expression of BrKCS6 significantly decreased in the flower, stem, and leaves in mutant, and the relative expressions of the downstream key genes of BrKCS6 were down-regulated in mutant. We were the first to clone the precious glossy bright gene BrKCS6 which has a great potential for commodity quality breeding in Chinese cabbage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The plant material and datasets employed in this study are available from the corresponding author on reasonable request.

References

  • Bach L, Michaelson LV, Haslam R, Bellec Y, Gissot L, Marion J, Da Costa M, Boutin J-P (2008) The very-long-chain hydroxy fatty acyl-CoA dehydratase PASTICCINO2 is essential and limiting for plant development. Proc Natl Acad Sci USA 105:14727–14731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernard A, Domergue F, Pascal S, Jetter R, Renne C, Faure JD, Haslam RP, Napier JA, Lessire R, Joubes J (2012) Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. Plant Cell 24:3106–3118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dellaert L, Van Es J, Koornneef M (1979) Eceriferum mutants in Arabidopsis thaliana (L.) Heynh. II. Phenotypic and genetic analysis. Arabid Inf Serv 16:10–26

    Google Scholar 

  • Dong X, Ji J, Yang L, Fang Z, Zhuang M, Zhang Y, Lv H, Wang Y, Sun P, Tang J, Liu D, Liu Y, Li Z (2019) Fine-mapping and transcriptome analysis of BoGL-3, a wax-less gene in cabbage (Brassica oleracea L. var. capitata). Mol Genet Genom 294:1231–1239

    Article  CAS  Google Scholar 

  • Fehling E, Mukherjee KD (1991) Acyl-CoA elongase from a higher plant (Lunaria annua): metabolic intermediates of very-long-chain acyl-CoA products and substrate specificity. Biochim Biophys Acta 1082:239–246

    Article  CAS  PubMed  Google Scholar 

  • Fiebig A, Mayfield J, Miley N, Chau S, Fischer R, Preuss D (2000) Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems. Plant Cell 12:2001–2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu W, Huang S, Gao Y, Zhang M, Qu G, Wang N, Liu Z, Feng H (2020) Role of BrSDG8 on bolting in Chinese cabbage (Brassica rapa). Theor Appl Genet 133:2937–2948

    Article  CAS  PubMed  Google Scholar 

  • Gan L, Zhu S, Zhao Z, Liu L, Wang X, Zhang Z, Zhang X, Wang J, Wang J, Guo X, Wan J (2017) Wax Crystal-Sparse Leaf 4, encoding a beta-ketoacyl-coenzyme A synthase 6, is involved in rice cuticular wax accumulation. Plant Cell Rep 36:1655–1666

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Qu G, Huang S, Liu Z, Fu W, Zhang M, Feng H (2022) BrCPS1 function in leafy head formation was verified by two allelic mutations in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Front Plant Sci 13:889798

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo W, Wu Q, Yang L, Hu W, Liu D, Liu Y (2020) Ectopic expression of CsKCS6 from navel orange promotes the production of very-long-chain fatty acids (VLCFAs) and increases the abiotic stress tolerance of Arabidopsis thaliana. Front Plant Sci 11:564656

    Article  PubMed  PubMed Central  Google Scholar 

  • Han F, Huang J, Xie Q, Liu Y, Fang Z, Yang L, Zhuang M, Zhang Y, Lv H, Wang Y, Ji J, Li Z (2021) Genetic mapping and candidate gene identification of BoGL5, a gene essential for cuticular wax biosynthesis in broccoli. BMC Genom 22:811

    Article  CAS  Google Scholar 

  • Hooker TS, Millar AA, Kunst L (2002) Significance of the expression of the CER6 condensing enzyme for cuticular wax production in Arabidopsis. Plant Physiol 129:1568–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Lü S, Ayaz A, Zheng M, Yang X, Zaman W, Zhao H (2022) Arabidopsis KCS5 and KCS6 Play redundant roles in wax synthesis. Int J Mol Sci 23:4450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Yang X, Zheng M, Chen Z, Yang Z, Wu P, Jenks MA, Wang G, Feng T, Liu L, Yang P, Lu S, Zhao H (2023) An ancestral role for 3-KETOACYL-COA SYNTHASE3 as a negative regulator of plant cuticular wax synthesis. Plant Cell

  • Ji JL, Cao WX, Dong X, Liu ZZ, Fang ZY, Zhuang M, Zhang YY, Lv HH, Wang Y, Sun PT, Liu YM, Li ZS, Yang LM (2018) A 252-bp insertion in BoCER1 is responsible for the glossy phenotype in cabbage (Brassica oleracea L. var. capitata). Mol Breed 38:128

    Article  Google Scholar 

  • Jiang D, Fang J, Lou L, Zhao J, Yuan S, Yin L, Sun W, Peng L, Guo B, Li X (2015) Characterization of a null allelic mutant of the rice NAL1 gene reveals its role in regulating cell division. PLoS ONE 10:e0118169

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiao Y, Burow G, Gladman N, Acosta-Martinez V, Chen J, Burke J, Ware D, Xin Z (2017) Efficient identification of causal mutations through sequencing of bulked F2 from two allelic bloomless mutants of Sorghum bicolor. Front Plant Sci 8:2267

    Article  PubMed  Google Scholar 

  • Kunst L, Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42(1):51–80

    Article  CAS  PubMed  Google Scholar 

  • Lee SB, Suh MC (2015) Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species. Plant Cell Rep 34:557–572

    Article  CAS  PubMed  Google Scholar 

  • Lee G, Piao R, Lee Y, Kim B, Seo J, Lee D, Jang S, Jin Z, Lee C, Chin JH, Koh HJ (2019) Identification and characterization of LARGE EMBRYO, a new gene controlling embryo size in rice (Oryza sativa L.). Rice 12:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Leide J, Hildebrandt U, Reussing K, Riederer M, Vogg G (2007) The developmental pattern of tomato fruit wax accumulation and its impact on cuticular transpiration barrier properties: effects of a deficiency in a beta-ketoacyl-coenzyme A synthase (LeCER6). Plant Physiol 144:1667–1679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewandowska M, Keyl A, Feussner I (2020) Wax biosynthesis in response to danger: its regulation upon abiotic and biotic stress. New Phytol 227:698–713

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Yu S, Wei Y, Zhang F, Yu Y, Zhao X, Zhang D, Wang W (2012) Establishment of high frequency regeneration system from cotyledon in Brassica rapa L. Acta Agric Boreali-Occident Sin 21:118–123

    CAS  Google Scholar 

  • Liu D, Tang J, Liu Z, Dong X, Zhuang M, Zhang Y, Lv H, Sun P, Liu Y, Li Z, Ye Z, Fang Z, Yang L (2017a) Cgl2 plays an essential role in cuticular wax biosynthesis in cabbage (Brassica oleracea L. var. capitata). BMC Plant Biol 17:223

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Fang Z, Zhuang M, Zhang Y, Lv H, Liu Y, Li Z, Sun P, Tang J, Liu D, Zhang Z, Yang L (2017b) Fine-mapping and analysis of Cgl1, a gene conferring glossy trait in cabbage (Brassica oleracea L. var. capitata). Front Plant Sci 8:239

    PubMed  PubMed Central  Google Scholar 

  • Liu D, Dong X, Liu Z, Tang J, Zhuang M, Zhang Y, Lv H, Liu Y, Li Z, Fang Z, Yang L (2018) Fine mapping and candidate gene identification for wax biosynthesis locus, BoWax1 in Brassica oleracea L. var. capitata. Front Plant Sci 9:309

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu CH, Song GX, Wang N, Huang SN, Gao Y, Fu W, Zhang MD, Feng H (2021) A single SNP in Brcer1 results in wax deficiency in Chinese cabbage (Brassica campestris L. ssp. pekinensis). Sci Hortic 282:110019

    Article  CAS  Google Scholar 

  • Millar A, Clemens S, Zachgo S, Giblin E, Taylor D, Kunst L (1999) CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. Plant Cell 11:825–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pascal S, Bernard A, Sorel M, Pervent M, Vile D, Haslam RP, Napier JA, Lessire R, Domergue F, Joubes J (2013) The Arabidopsis cer26 mutant, like the cer2 mutant, is specifically affected in the very long chain fatty acid elongation process. Plant J 73:733–746

    Article  CAS  PubMed  Google Scholar 

  • Preuss D, Lemieux B, Yen G, Davis RJ (1993) A conditional sterile mutation eliminates surface components from Arabidopsis pollen and disrupts cell signaling during fertilization. Genes Dev 7:974–985

    Article  CAS  PubMed  Google Scholar 

  • Ram H, Soni P, Salvi P, Gandass N, Sharma A, Kaur A, Sharma TR (2019) Insertional mutagenesis approaches and their use in rice for functional genomics. Plants 8:310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson A, Boscari A, Schreiber L, Kerstiens G, Jarvis M, Herzyk P, Fricke W (2007) Cloning and expression analysis of candidate genes involved in wax deposition along the growing barley (Hordeum vulgare) leaf. Planta 226:1459–1473

    Article  CAS  PubMed  Google Scholar 

  • Riezman H (2007) The long and short of fatty acid synthesis. Cell 130:587–588

    Article  CAS  PubMed  Google Scholar 

  • Rowland O, Zheng H, Hepworth SR, Lam P, Jetter R, Kunst L (2006) CER4 encodes an alcohol-forming fatty acyl-coenzyme A reductase involved in cuticular wax production in Arabidopsis. Plant Physiol 142:866–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serra O, Soler M, Hohn C, Franke R, Schreiber L, Prat S, Molinas M, Figueras M (2009) Silencing of StKCS6 in potato periderm leads to reduced chain lengths of suberin and wax compounds and increased peridermal transpiration. J Exp Bot 60:697–707

    Article  CAS  PubMed  Google Scholar 

  • Tang GX, Zhou WJ, Li HZ, Mao BZ, Yoneyama K (2010) Medium, explant and genotype factors influencing shoot regeneration in oilseed Brassica spp. J Agron Crop Sci 189:351–358

    Article  Google Scholar 

  • Terauchi R, Abe A, Takagi H, Yoshida K, Kosugi S, Natsume S, Yaegashi H, Kanzaki H, Matsumura H, Mitsuoka C, Utsushi H, Tamiru M (2012) Whole genome sequencing and future breeding of rice. J Plant Biochem Biotechnol 21:10–14

    Article  CAS  Google Scholar 

  • Todd J, Post-Beittenmiller D, Jaworski JG (1999) KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant J 17:119–130

    Article  CAS  PubMed  Google Scholar 

  • Wang CJ, Li HL, Li YX, Meng QF, Xie F, Xu YJ, Wan ZJ (2019) Genetic characterization and fine mapping BrCER4 in involved cuticular wax formation in purple cai-tai (Brassica rapa L. var. purpurea). Mol Breed 39:12

    Article  CAS  Google Scholar 

  • Xin Y, Tan C, Wang C, Wu Y, Huang S, Gao Y, Wang L, Wang N, Liu Z, Feng H (2022) BrAN contributes to leafy head formation by regulating leaf width in Chinese cabbage (Brassica rapa L. ssp pekinensis). Hortic Res 9:uhac167

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong C, Xie Q, Yang Q, Sun P, Gao S, Li H, Zhang J, Wang T, Ye Z, Yang C (2020) WOOLLY, interacting with MYB transcription factor MYB31, regulates cuticular wax biosynthesis by modulating CER6 expression in tomato. Plant J 103:323–337

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Wang X, Zhao H, Liu F (2008) An intensive understanding of vacuum infiltration transformation of pakchoi (Brassica rapa ssp. chinensis). Plant Cell Rep 27:1369–1376

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Zeisler V, Schreiber L, Gao J, Hu K, Wen J, Yi B, Shen J, Ma C, Tu J, Fu T (2017) At5g02890 overexpression of the novel arabidopsis gene alters inflorescence stem wax composition and affects phytohormone homeostasis. Front Plant Sci 8:68

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang S, Tang H, Wei X, Zhao Y, Wang Z, Su H, Niu L, Yuan Y, Zhang X (2022) BrWAX3, encoding a beta-ketoacyl-CoA synthase, plays an essential role in cuticular wax biosynthesis in Chinese cabbage. Int J Mol Sci 23:10938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeats TH, Rose JK (2013) The formation and function of plant cuticles. Plant Physiol 163:5–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F-L, Takahata Y, Watanabe M, Xu J-B (2000) Agrobacterium-mediated transformation of cotyledonary explants of Chinese cabbage (Brassica campestris L. ssp. pekinensis). Plant Cell Rep 19:569–575

    Article  PubMed  Google Scholar 

  • Zhang X, Wang Q, Zou C, Liu Z, Wang Y, Feng H (2013) Genetic analysis and preliminary mapping of wax gene on stem in Chinese cabbage. Mol Breed 32:867–874

    Article  Google Scholar 

  • Zhang C, Chen F, Zhao Z, Hu L, Liu H, Cheng Z, Weng Y, Chen P, Li Y (2018) Mutations in CsPID encoding a Ser/Thr protein kinase are responsible for round leaf shape in cucumber (Cucumis sativus L.). Theor Appl Genet 131:1379–1389

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Zhou F, Liu Z, Feng X, Li Y, Zhu P (2022) Inactivation of BoORP3a, an oxysterol-binding protein, causes a low wax phenotype in ornamental kale. Hortic Res 9:uhac219

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Huang S, Zhang M, Zhang Y, Feng H (2021) Mapping of a pale green mutant gene and its functional verification by allelic mutations in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Front Plant Sci 12:699308

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the National Natural Science Foundation of China (Grant No. 31972405).

Funding

This study was funded by the National Natural Science Foundation of China (Grant No. 31972405).

Author information

Authors and Affiliations

Authors

Contributions

HF and JR designed the experiments. GS performed the experiments, and SD wrote the manuscript. CL assisted in the screening of mutants. HF and JZ revised the manuscript. All authors reviewed and approved this submission.

Corresponding authors

Correspondence to Jie Ren or Hui Feng.

Ethics declarations

Conflicts of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Communicated by Esther van der Knaap.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, G., Dong, S., Liu, C. et al. BrKCS6 mutation conferred a bright glossy phenotype to Chinese cabbage. Theor Appl Genet 136, 216 (2023). https://doi.org/10.1007/s00122-023-04464-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04464-1

Navigation