Skip to main content
Log in

Cytogenetic identification and molecular marker development of a novel wheat–Thinopyrum ponticum translocation line with powdery mildew resistance

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A new wheat–Thinopyrum ponticum translocation line with excellent powdery mildew resistance was produced, and alien-specific PCR markers and FISH probes were developed by SLAF-seq.

Abstract

Powdery mildew is one of the most threatening diseases in wheat production. Thinopyrum ponticum (Podp.) Barkworth and D. R. Dewey, as a wild relative, has been used for wheat genetic improvement for the better part of a century. In view of the good powdery mildew resistance of Th. ponticum, we have been working to transfer the resistance genes from Th. ponticum to wheat by creating translocation lines. In this study, a new wheat–Th. ponticum translocation line with excellent resistance and agronomic performance was developed and through seedling disease evaluation, gene postulation and diagnostic marker analysis proved to carry a novel Pm gene derived from Th. ponticum. Cytogenetic analysis revealed that a small alien segment was translocated to the terminal of chromosome 1D to form new translocation TTh-1DS·1DL chromosome. The translocation breakpoint was determined to lie in 21.5 Mb region of chromosome 1D by using Wheat660K SNP array analysis. Based on specific-locus amplified fragment sequencing (SLAF-seq) technology, eight molecular markers and one repetitive sequence probe were developed, which were specific for Th. ponticum. Fortunately, the probe could be used in distinguishing six alien chromosome pairs in partial amphiploid Xiaoyan 7430 by fluorescence in situ hybridization (FISH). Furthermore, a Thinopyrum-specific oligonucleotide probe was designed depending on the sequence information of the FISH probe. The novel translocation line could be used in wheat disease resistance breeding, and these specific markers and probes will enable wheat breeders to rapidly trace the alien genome with the novel Pm gene(s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Phenotype data of agronomic traits are presented in Table 3. The genotype data and materials reported in this study are available upon request.

References

  • An DG, Zheng Q, Luo QL, Ma PT, Zhang HX, Li LH, Han FP, Xu HX, Xu YF, Zhang XT, Zhou YL (2015) Molecular cytogenetic identification of a new wheat–rye 6R chromosome disomic addition line with powdery mildew resistance. PLoS ONE 10:e0134534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • An DG, Ma PT, Zheng Q, Fu SL, Li LH, Han FP, Han GH, Wang J, Xu YF, Jin YL, Luo QL, Zhang XT (2019) Development and molecular cytogenetic identification of a new wheat–rye 4R chromosome disomic addition line with resistances to powdery mildew, stripe rust and sharp eyespot. Theor Appl Genet 132:257–272

    Article  CAS  PubMed  Google Scholar 

  • Bommineni VR, Jauhar PP (1997) Wide hybridization and genome relationships in cereals: an assessment of molecular approaches. Maydica 42:81–105

    Google Scholar 

  • Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Armstrong K (1994) Genomic in situ hybridization in Avena sativa. Genome 37:607

    Article  CAS  PubMed  Google Scholar 

  • Chen PD, Qi LL, Zhou B, Zhang SZ, Liu DJ (1995) Development and molecular cytogenetic analysis of wheat–Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet 91:1125–1128

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Conner RL, Laroche A, Thomas JB (1998) Genome analysis of Thinopyrum intermedium and Thinopyrum ponticum using genomic in situ hybridization. Genome 41:580–586

    Article  CAS  PubMed  Google Scholar 

  • Cowger C, Miranda L, Griffey C, Hall M, Murphy JP, Maxwell J (2012) Disease resistance in wheat. CABI, Wallingford, pp 84–119

    Book  Google Scholar 

  • Cuadrado A, Golczyk H, Jouve N (2009) A novel, simple and rapid nondenaturing FISH (ND-FISH) technique for the detection of plant telomeres. Potential used and possible target structures detected. Chromosome Res 17:755–762

    Article  CAS  PubMed  Google Scholar 

  • Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284:601–603

    Article  CAS  PubMed  Google Scholar 

  • Du P, Zhuang LF, Wang YZ, Yuan L, Wang Q, Wang DR, Dawadondup TLJ, Shen J, Xu HB, Zhao H, Chu CG, Qi ZJ (2017) Development of oligonucleotides and multiplex probes for quick and accurate identification of wheat and Thinopyrum bessarabicum chromosomes. Genome 60:93–103

    Article  CAS  PubMed  Google Scholar 

  • Du HM, Tang ZX, Duan Q, Tang SY, Fu SL (2018) Using the 6RLKu minichromosome of rye (Secale cereale L.) to create wheat–rye 6D/6RLKu small segment translocation lines with powdery mildew resistance. Int J Mol Sci 19:3933

    Article  PubMed Central  Google Scholar 

  • Duan Q, Wang YY, Qiu L, Ren TH, Li Z, Fu SL, Tang ZX (2017) Physical location of new PCR-based markers and powdery mildew resistance gene(s) on rye (Secale cereale L.) chromosome 4 using 4R dissection lines. Front Plant Sci 8:1716

    Article  PubMed  PubMed Central  Google Scholar 

  • Friebe B, Heun M, Tuleen N, Zeller FJ, Gill BS (1994) Cytogenetically monitored transfer of powdery mildew resistance from rye into wheat. Crop Sci 34:621–625

    Article  Google Scholar 

  • Friebe B, Jiang JM, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat–alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87

    Article  Google Scholar 

  • Fu DL, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen XM, Sela H, Fahima T, Dubcovsky J (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu SL, Chen L, Wang YY, Li M, Yang ZJ, Qiu L, Yan BJ, Ren ZL, Tang ZX (2015) Oligonucleotide probes for ND-FISH analysis to identify rye and wheat chromosomes. Sci Rep 5:10552

    Article  PubMed  PubMed Central  Google Scholar 

  • Gemayel R, Cho J, Boeynaems S, Verstrepen KJ (2012) Beyond junk-variable tandem repeats as facilitators of rapid evolution of regulatory and coding sequences. Genes 3:461–480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han FP, Lamb JC, Birchler JA (2006) High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc Natl Acad Sci U S A 103:3238–3243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han FP, Gao Z, Birchler JA (2009) Centromere inactivation and reactivation reveal both genetic and epigenetic components for centromere specification. Plant Cell 21:1929–1939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hannan AJ (2018) Tandem repeats mediating genetic plasticity in health and disease. Nat Rev Genet 19:286–298

    Article  CAS  PubMed  Google Scholar 

  • Hawkesford MJ, Araus JL, Park R, Calderini D, Miralles D, Shen TM, Zhang JP, Parry MAJ (2013) Prospects of doubling global wheat yields. Food Energy Secur 2:34–48

    Article  Google Scholar 

  • He RL, Chang ZJ, Yang ZJ, Yuan ZY, Zhan HX, Zhang XJ, Liu JX (2009) Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theor Appl Genet 118:1173–1180

    Article  CAS  PubMed  Google Scholar 

  • He HG, Zhu SY, Zhao RH, Jiang ZN, Ji YY, Ji J, Qiu D, Li HJ, Bie TD (2018) Pm21, encoding a typical CC-NBS-LRR protein, confers broad-spectrum resistance to wheat powdery mildew disease. Mol Plant 11:879–882

    Article  CAS  PubMed  Google Scholar 

  • He HG, Du HN, Liu RK, Liu TL, Yang LJ, Gong SJ, Tang ZX, Du HM, Liu C, Han R, Sun WL, Wang L, Zhu SY (2021) Characterization of a new gene for resistance to wheat powdery mildew on chromosome 1RL of wild rye Secale sylvestre. Theor Appl Genet 134:887–896

    Article  CAS  PubMed  Google Scholar 

  • Hewitt T, Muller MC, Molnar I, Mascher M, Holusova K, Simkova H, Kunz L, Zhang JP, Li JB, Bhatt D, Sharma R, Schudel S, Yu GT, Steuernagel B, Periyannan S, Wulff BBH, Ayliffe M, McIntosh R, Keller B, Lagudah E, Zhang P (2021) A highly differentiated region of wheat chromosome 7AL encodes a Pm1a immune receptor that recognizes its corresponding AvrPm1a effector from Blumeria graminis. New Phytol 229:2812–2826

    Article  CAS  PubMed  Google Scholar 

  • Hou LY, Zhang XJ, Li X, Jia JQ, Yang HZ, Zhan HX, Qiao LY, Guo HJ, Chang ZJ (2015) Mapping of powdery mildew resistance gene pmCH89 in a putative wheat–Thinopyrum intermedium introgression line. Int J Mol Sci 16:17231–17244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang XQ, Hsam SLK, Zeller FJ (1997) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em. Thell.) 4. Gene Pm24 in Chinese landrace Chiyacao. Theor Appl Genet 95:950–953

    Article  Google Scholar 

  • Huang XY, Zhu MQ, Zhuang LF, Zhang SY, Wang JJ, Chen XJ, Wang DR, Chen JY, Bao YG, Guo J, Zhang JL, Feng YG, Chu CG, Du P, Qi ZJ, Wang HG, Chen PD (2018) Structural chromosome rearrangements and polymorphisms identified in Chinese wheat cultivars by high-resolution multiplex oligonucleotide FISH. Theor Appl Genet 131:1967–1986

    Article  CAS  PubMed  Google Scholar 

  • Hurni S, Brunner S, Buchmann G, Herren G, Jordan T, Krukowski P, Wicker T, Yahiaoui N, Mago R, Keller B (2013) Rye Pm8 and wheat Pm3 are orthologous genes and show evolutionary conservation of resistance function against powdery mildew. Plant J 76:957–969

    Article  CAS  PubMed  Google Scholar 

  • IWGSC, Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N et al (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361(6403):eaar7191

    Article  CAS  Google Scholar 

  • Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–467

    Article  CAS  PubMed  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Lang T, Li GR, Wang HJ, Yu ZH, Chen QH, Yang EN, Fu SL, Tang ZX, Yang ZJ (2019) Physical location of tandem repeats in the wheat genome and application for chromosome identification. Planta 249:663–675

    Article  CAS  PubMed  Google Scholar 

  • Lei J, Zhou JW, Sun HJ, Wan WT, Xiao J, Yuan CX, Karafiatove M, Dolezel J, Wang HY, Wang XE (2020) Development of oligonucleotide probes for FISH karyotyping in Haynaldia villosa, a wild relative of common wheat. Crop J 8:676–681

    Article  Google Scholar 

  • Li HJ, Wang XM (2009) Thinopyrum ponticum and Th. intermedium: the promising source of resistance to fungal and viral diseases of wheat. J Genet Genom 36:557–565

    Article  CAS  Google Scholar 

  • Li JB, Qiao LY, Li X, Zhang XJ, Zhan HX, Guo HJ, Ren YK, Chang ZJ (2015) Molecular mapping of powdery mildew resistance gene PmCH7124 in a putative wheat–Thinopyrum intermedium introgression line. Acta Agron Sin 41:49

    Article  CAS  Google Scholar 

  • Li GR, Wang HJ, Lang T, Li JB, La SX, Yang EN, Yang ZJ (2016a) New molecular markers and cytogenetic probes enable chromosome identification of wheat–Thinopyrum intermedium introgression lines for improving protein and gluten contents. Planta 244:865–876

    Article  CAS  PubMed  Google Scholar 

  • Li HW, Zheng Q, Pretorius ZA, Li B, Tang DZ, Li ZS (2016b) Establishment and characterization of new wheat–Thinopyrum ponticum addition and translocation lines with resistance to Ug99 races. J Genet Genom 43:573–575

    Article  Google Scholar 

  • Li QF, Lu YQ, Pan CL, Yao MM, Zhang JP, Yang XM, Liu WH, Li XQ, Xi YJ, Li LH (2016c) Chromosomal localization of genes conferring desirable agronomic traits from wheat–Agropyron cristatum disomic addition line 5113. PLoS ONE 11:e0165957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li HH, Jiang B, Wang JC, Lu YQ, Zhang JP, Pan CL, Yang XM, Li XQ, Liu WH, Li LH (2017a) Mapping of novel powdery mildew resistance gene(s) from Agropyron cristatum chromosome 2P. Theor Appl Genet 130:109–121

    Article  CAS  PubMed  Google Scholar 

  • Li XJ, Jiang XL, Chen XD, Song J, Ren CC, Xiao YJ, Gao XH, Ru ZG (2017b) Molecular cytogenetic identification of a novel wheat–Agropyron elongatum chromosome translocation line with powdery mildew resistance. PLoS ONE 12:e0184462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li HW, Boshoff WHP, Pretorius ZA, Zheng Q, Li B, Li ZS (2019) Establishment of wheat–Thinopyrum ponticum translocation lines with resistance to Puccinia graminis f. sp. tritici Ug99. J Genet Genom 46:405–407

    Article  Google Scholar 

  • Li JC, Zhao L, Cheng XN, Bai GH, Li M, Wu J, Yang QH, Chen XH, Yang ZJ, Zhao JX (2020a) Molecular cytogenetic characterization of a novel wheat–Psathyrostachys huashanica Keng T3DS-5NsL·5NsS and T5DL-3DS·3DL dual translocation line with powdery mildew resistance. BMC Plant Biol 20:163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li MM, Dong LL, Li BB, Wang ZZ, Xie JZ, Qiu D, Li YH, Shi WQ, Yang LJ, Wu QH, Chen YX, Lu P, Guo GH, Zhang HZ, Zhang PP, Zhu KY, Li YW, Zhang Y, Wang R, Yuan CG, Liu W, Yu DZ, Luo MC, Fahima T, Nevo E, Li HJ, Liu ZY (2020b) A CNL protein in wild emmer wheat confers powdery mildew resistance. New Phytol 228:1027–1037

    Article  CAS  PubMed  Google Scholar 

  • Li GR, Zhang T, Yu ZH, Wang HJ, Yang EN, Yang ZJ (2021a) An efficient Oligo-FISH painting system for revealing chromosome rearrangements and polyploidization in Triticeae. Plant J 105:978–993

    Article  CAS  PubMed  Google Scholar 

  • Li MZ, Wang YZ, Liu XJ, Li XF, Wang HG, Bao YG (2021b) Molecular cytogenetic identification of a novel wheat–Th. ponticum 1Js (1B) substitution line resistant to powdery mildew and leaf rust. Front Plant Sci. https://doi.org/10.3389/fpls.2021b.727734

    Article  PubMed  PubMed Central  Google Scholar 

  • Ling HQ, Ma B, Shi XL, Liu H, Dong LL, Sun H, Cao YH, Gao Q, Zheng SS, Li Y, Yu Y, Du HL, Qi M, Li Y, Lu HW, Yu H, Cui Y, Wang N, Chen CL, Wu HL, Zhao Y, Zhang JC, Li YW, Zhou WJ, Zhang BR, Hu WJ, van Eijk MJT, Tang JF, Witsenboer HMA, Zhao SC, Li ZS, Zhang AM, Wang DW, Liang CZ (2018) Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature 557:424–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu LQ, Luo QL, Li HW, Li B, Li ZS, Zheng Q (2018a) Physical mapping of the blue-grained gene from Thinopyrum ponticum chromosome 4Ag and development of blue-grain-related molecular markers and a FISH probe based on SLAF-seq technology. Theor Appl Genet 131:2359–2370

    Article  PubMed  Google Scholar 

  • Liu LQ, Luo QL, Teng W, Li B, Li HW, Li YW, Li ZS, Zheng Q (2018b) Development of Thinopyrum ponticum-specific molecular markers and FISH probes based on SLAF-seq technology. Planta 247:1099–1108

    Article  CAS  PubMed  Google Scholar 

  • Lu P, Guo L, Wang ZZ, Li BB, Li J, Li YH, Qiu D, Shi WQ, Yang LJ, Wang N, Guo GH, Xie JZ, Wu QH, Chen YX, Li MM, Zhang HZ, Dong LL, Zhang PP, Zhu KY, Yu DZ, Zhang Y, Deal KR, Huo NX, Liu CM, Luo MC, Dvorak J, Gu YQ, Li HJ, Liu ZY (2020) A rare gain of function mutation in a wheat tandem kinase confers resistance to powdery mildew. Nat Commun 11:680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo PG, Luo HY, Chang ZJ, Zhang HY, Zhang M, Ren ZL (2009) Characterization and chromosomal location of Pm40 in common wheat: a new gene for resistance to powdery mildew derived from Elytrigia intermedium. Theor Appl Genet 118:1059–1064

    Article  CAS  PubMed  Google Scholar 

  • Ma SW, Wang M, Wu JH, Guo WL, Chen YM, Li GW, Wang YP, Shi WM, Xia GM, Fu DL, Kang ZS, Ni F (2021) WheatOmics: a platform combining multiple omics data to accelerate functional genomics studies in wheat. Mol Plant 14:1965–1968

    Article  CAS  PubMed  Google Scholar 

  • Manser B, Koller T, Praz CR, Roulin AC, Zbinden H, Arora S, Steuernagel B, Wulff BBH, Keller B, Sánchez-Martín J (2021) Identification of specificity-defining amino acids of the wheat immune receptor Pm2 and powdery mildew effector AvrPm2. Plant J 106:993–1007

    Article  CAS  PubMed  Google Scholar 

  • Moore JW, Herrera-Foessel S, Lan CX, Schnippenkoetter W, Ayliffe M, Huerta-Espino J, Lillemo M, Viccars L, Milne R, Periyannan S, Kong XY, Spielmeyer W, Talbot M, Bariana H, Patrick JW, Dodds P, Singh R, Lagudah E (2015) A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat Genet 47:1494–1498

    Article  CAS  PubMed  Google Scholar 

  • Nikitina E, Kuznetsova V, Kroupin P, Karlov GI, Divashuk MG (2020) Development of specific Thinopyrum cytogenetic markers for wheat–wheatgrass hybrids using sequencing and qPCR data. Int J Mol Sci 21:4495

    Article  CAS  PubMed Central  Google Scholar 

  • Orgel LE, Crick FHC (1980) Selfish DNA: the ultimate parasite. Nature 284:604–607

    Article  CAS  PubMed  Google Scholar 

  • Ren TH, Tang ZX, Fu SL, Yan BJ, Tan FQ, Ren ZL, Li Z (2017) Molecular cytogenetic characterization of novel wheat–rye T1RS.1BL translocation lines with high resistance to diseases and great agronomic traits. Front Plant Sci 8:799

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Martin J, Steuernagel B, Ghosh S, Herren G, Hurni S, Adamski N, Vrana J, Kubalakova M, Krattinger SG, Wicker T, Dolezel J, Keller B, Wulff BB (2016) Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol 17:221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanchez-Martin J, Widrig V, Herren G, Wicker T, Zbinden H, Gronnier J, Sporri L, Praz CR, Heuberger M, Kolodziej MC, Isaksson J, Steuernagel B, Karafiatova M, Dolezel J, Zipfel C, Keller B (2021) Wheat Pm4 resistance to powdery mildew is controlled by alternative splice variants encoding chimeric proteins. Nat Plants 7:327–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen XK, Ma LX, Zhong SF, Liu N, Zhang M, Chen WQ, Zhou YL, Li HJ, Chang ZJ, Li X, Bai GH, Zhang HY, Tan FQ, Ren ZL, Luo PG (2015) Identification and genetic mapping of the putative Thinopyrum intermedium-derived dominant powdery mildew resistance gene PmL962 on wheat chromosome arm 2BS. Theor Appl Genet 128:517–528

    Article  CAS  PubMed  Google Scholar 

  • Si QM, Zhang XX, Sheng BQ, Duan XY (1987) Identification of physiologic race of Erysiphe graminis f. sp. tritici. Scientia Agricultura Sinica 20:64–70

    Google Scholar 

  • Singh RP, Singh PK, Rutkoski J, Hodson DP, He XY, Jorgensen LN, Hovmoller MS, Huerta-Espino J (2016) Disease impact on wheat yield potential and prospects of genetic control. Annu Rev Phytopathol 54:303–322

    Article  CAS  PubMed  Google Scholar 

  • Singh SP, Hurni S, Ruinelli M, Brunner S, Sanchez-Martin J, Krukowski P, Peditto D, Buchmann G, Zbinden H, Keller B (2018) Evolutionary divergence of the rye Pm17 and Pm8 resistance genes reveals ancient diversity. Plant Mol Biol 98:249–260

    Article  CAS  PubMed  Google Scholar 

  • Sun CH, Hou LY, Guo HJ, Zhang XJ, Jia JQ, Li X, Zhan HX, Chang ZJ (2013) Molecular mapping of powdery mildew resistance gene pmCH83 in a putative wheat–Thinopyrum intermedium cryptic introgression line. Acta Agron Sin 39:2107

    Article  CAS  Google Scholar 

  • Sun HG, Hu JH, Song W, Qiu D, Cui L, Wu PP, Zhang HJ, Liu HW, Yang L, Qu YF, Li YH, Li T, Cheng W, Zhou Y, Liu ZY, Li JT, Li HJ (2018) Pm61: a recessive gene for resistance to powdery mildew in wheat landrace Xuxusanyuehuang identified by comparative genomics analysis. Theor Appl Genet 131:2085–2097

    Article  CAS  PubMed  Google Scholar 

  • Tang QY, Zhang CX (2013) Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Sci 20:254–260

    Article  PubMed  Google Scholar 

  • Tang ZX, Yang ZJ, Fu SL (2014) Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J Appl Genet 55:313–318

    Article  CAS  PubMed  Google Scholar 

  • Tang SY, Tang ZX, Qiu L, Yang ZJ, Li GR, Lang T, Zhu WQ, Zhang JH, Fu SL (2018) Developing new oligo probes to distinguish specific chromosomal segments and the A, B, D genomes of wheat (Triticum aestivum L.) using ND-FISH. Front Plant Sci 9:1104

    Article  PubMed  PubMed Central  Google Scholar 

  • Vinces MD, Legendre M, Caldara M, Hagihara M, Verstrepen KJ (2009) Unstable tandem repeats in promoters confer transcriptional evolvability. Science 324:1213–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan HS, Li J, Ma SW, Yang F, Chai L, Liu ZH, Wang Q, Pu ZJ, Yang WY (2021) Allopolyploidization increases genetic recombination in the ancestral diploid D genome during wheat evolution. Crop J. https://doi.org/10.1016/j.cj.2021.09.002

    Article  Google Scholar 

  • Wang YH, Wang HG (2016) Characterization of three novel wheat–Thinopyrum intermedium addition lines with novel storage protein subunits and resistance to both powdery mildew and stripe rust. J Genet Genom 43:45–48

    Article  CAS  Google Scholar 

  • Wang J, Liu YL, Su HD, Guo XG, Han FP (2017) Centromere structure and function analysis in wheat–rye translocation lines. Plant J 91:199–207

    Article  CAS  PubMed  Google Scholar 

  • Wang YZ, Cao Q, Zhang JJ, Wang SW, Chen CH, Wang CY, Zhang H, Wang YJ, Ji WQ (2020) Cytogenetic analysis and molecular marker development for a new wheat–Thinopyrum ponticum 1Js (1D) disomic substitution line with resistance to stripe rust and powdery mildew. Front Plant Sci 11:1282

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu QH, Zhao F, Chen YX, Zhang PP, Zhang HZ, Guo GH, Xie JZ, Dong LL, Lu P, Li MM, Ma SW, Fahima T, Nevo E, Li HJ, Zhang YJ, Liu ZY (2021) Bulked segregant CGT-Seq-facilitated map-based cloning of a powdery mildew resistance gene originating from wild emmer wheat (Triticum dicoccoides). Plant Biotechnol J 19:1288–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xi W, Tang ZX, Tang SY, Yang ZJ, Luo J, Fu SL (2019) New ND-FISH-positive oligo probes for identifying Thinopyrum chromosomes in wheat backgrounds. Int J Mol Sci 20:2031

    Article  CAS  PubMed Central  Google Scholar 

  • Xie JZ, Guo GH, Wang Y, Hu TZ, Wang LL, Li JT, Qiu D, Li YH, Wu QH, Lu P, Chen YX, Dong LL, Li MM, Zhang HZ, Zhang PP, Zhu KY, Li BB, Deal KR, Huo NX, Zhang Y, Luo MC, Liu SZ, Gu YQ, Li HJ, Liu ZY (2020) A rare single nucleotide variant in Pm5e confers powdery mildew resistance in common wheat. New Phytol 228:1011–1026

    Article  CAS  PubMed  Google Scholar 

  • Xing LP, Hu P, Liu JQ, Witek K, Zhou S, Xu JF, Zhou WH, Gao L, Huang ZP, Zhang RQ, Wang XE, Chen PD, Wang HY, Jones JDG, Karafiatova M, Vrana J, Bartos J, Dolezel J, Tian YC, Wu YF, Cao AZ (2018) Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat. Mol Plant 11:874–878

    Article  CAS  PubMed  Google Scholar 

  • Xing LP, Yuan L, Lv ZS, Wang Q, Yin CH, Huang ZP, Liu JQ, Cao SQ, Zhang RQ, Chen PD, Karafiátová M, Vrána J, Bartoš J, Doležel J, Cao AZ (2021) Long-range assembly of sequences helps to unravel the genome structure and small variation of the wheat–Haynaldia villosa translocated chromosome 6VS.6AL. Plant Biotechnol J 19:1567–1578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yahiaoui N, Srichumpa P, Dudler R, Keller B (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 37:528–538

    Article  CAS  PubMed  Google Scholar 

  • Yang GT (2018) Molecular cytogenetic and disease resistance characterization of wheat–Thinopyrum translocation lines. Dissertation, University of Chinese Academy of Sciences

  • Yang GT, Boshoff WHP, Li HW, Pretorius ZA, Luo QL, Li B, Li ZS, Zheng Q (2021a) Chromosomal composition analysis and molecular marker development for the novel Ug99-resistant wheat–Thinopyrum ponticum translocation line WTT34. Theor Appl Genet 134:1587–1599

    Article  CAS  PubMed  Google Scholar 

  • Yang GT, Zheng Q, Hu P, Li HW, Luo QL, Li B, Li ZS (2021b) Cytogenetic identification and molecular marker development for the novel stripe rust-resistant wheat–Thinopyrum intermedium translocation line WTT11. aBIOTECH 2:343–356

    Article  CAS  Google Scholar 

  • Yu Z, Wang H, Xu Y, Li Y, Lang T, Yang Z, Li G (2019) Characterization of chromosomal rearrangement in new wheat–Thinopyrum intermedium addition lines carrying Thinopyrum-specific grain hardness Genes. Agronomy 9:18

    Article  CAS  Google Scholar 

  • Zeller FJ, Hsam SL (1983) Broadening the genetic variability of cultivated wheat by utilizing rye chromatin. In: Proceedings of the sixth international wheat genetics symposium, pp 161–173

  • Zhan HX, Li GR, Zhang XJ, Li X, Guo HJ, Gong WP, Jia JQ, Qiao LY, Ren YK, Yang ZJ, Chang ZJ (2014) Chromosomal location and comparative genomics analysis of powdery mildew resistance gene Pm51 in a putative wheat–Thinopyrum ponticum introgression line. PLoS ONE 9:e113455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhan HX, Li X, Chang ZJ, Yang ZJ, Guo HJ, Jia JQ, Tian ZG, Zhang XJ, Qiao LY (2015a) Wheat powdery mildew resistance gene Pm51 molecular markers and their application. Patent Publication Number: CN104313021 A. Accessed 28 Jan

  • Zhan HX, Zhang XJ, Li GR, Pan ZH, Hu J, Li X, Qiao LY, Jia JQ, Guo HS, Chang ZJ, Yang ZJ (2015b) Molecular characterization of a new wheat–Thinopyrum intermedium translocation line with resistance to powdery mildew and stripe rust. Int J Mol Sci 16:2162–2173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XY, Dong YS, Wang RRC (1996) Characterization of genomes and chromosomes in partial amphiploids of the hybrid Triticum aestivum × Thinopyrum ponticum by in situ hybridization, isozyme analysis, and RAPD. Genome 39:1062–1071

    Article  CAS  PubMed  Google Scholar 

  • Zhang XY, Wang RRC, Fedak G, Dong YC (1997) Determination of genome and chromosome composition of Thinopyrum intermedium and partial amphiploids of Triticum aestivum × Th. intermedium by GISH and genome-specific RAPD markers. Agr Sci China 1997:71–80

    Google Scholar 

  • Zhang RQ, Sun BX, Chen J, Cao AZ, Xing LP, Feng YG, Lan CX, Chen PD (2016) Pm55, a developmental-stage and tissue-specific powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat. Theor Appl Genet 129:1975–1984

    Article  CAS  PubMed  Google Scholar 

  • Zhang RQ, Fan YL, Kong LN, Wang ZJ, Wu JZ, Xing LP, Cao AZ, Feng YG (2018) Pm62, an adult-plant powdery mildew resistance gene introgressed from Dasypyrum villosum chromosome arm 2VL into wheat. Theor Appl Genet 131:2613–2620

    Article  CAS  PubMed  Google Scholar 

  • Zhang CZ, Huang L, Zhang HF, Hao QQ, Lyu B, Wang MN, Epstein L, Liu M, Kou CL, Qi J, Chen FJ, Li MK, Gao G, Ni F, Zhang LQ, Hao M, Wang JR, Chen XM, Luo MC, Zheng YL, Wu JJ, Liu DC, Fu DL (2019) An ancestral NB-LRR with duplicated 3′UTRs confers stripe rust resistance in wheat and barley. Nat Commun 10:4023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang RQ, Xiong CX, Mu HQ, Yao RN, Meng XR, Kong LN, Xing LP, Wu JZ, Feng YG, Cao AZ (2020) Pm67, a new powdery mildew resistance gene transferred from Dasypyrum villosum chromosome 1V to common wheat (Triticum aestivum L.). Crop J 9:882–888

    Article  Google Scholar 

  • Zhao GY, Zou C, Li K, Wang K, Li TB, Gao LF, Zhang XX, Wang HJ, Yang ZJ, Liu X, Jiang WK, Mao L, Kong XY, Jiao YN, Jia JZ (2017) The Aegilops tauschii genome reveals multiple impacts of transposons. Nat Plants 3:946–955

    Article  CAS  PubMed  Google Scholar 

  • Zheng Q, Lv ZL, Niu ZX, Li B, Li HW, Xu SS, Han FP, Li ZS (2014) Molecular cytogenetic characterization and stem rust resistance of five wheat–Thinopyrum ponticum partial amphiploids. J Genet Genom 41:591–599

    Article  Google Scholar 

  • Zhou SH, Zhang JP, Che YH, Liu WH, Lu YQ, Yang XM, Li XQ, Jia JZ, Liu X, Li LH (2018) Construction of Agropyron Gaertn. genetic linkage maps using a wheat 660K SNP array reveals a homoeologous relationship with the wheat genome. Plant Biotechnol J 16:818–827

    Article  CAS  PubMed  Google Scholar 

  • Zhuang LF, Sun L, Li AX, Chen TT, Qi ZJ (2010) Identification and development of diagnostic markers for a powdery mildew resistance gene on chromosome 2R of Chinese rye cultivar Jingzhouheimai. Mol Breeding 27:455–465

    Article  CAS  Google Scholar 

  • Zou SH, Wang H, Li YW, Kong ZS, Tang DZ (2018) The NB-LRR gene Pm60 confers powdery mildew resistance in wheat. New Phytol 218:298–309

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank Prof. Yilin Zhou at the Institute of Plant Protection, Chinese Academy of Agricultural Sciences, for providing powdery mildew assessment. This project was supported by the National Natural Science Foundation of China (No. 31971875) and the National Key Research and Development Program of China (2016YFD0102000).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

ZSL and QZ conceived the research; GTY and CYT performed the experiments; GTY and QZ drafted the manuscript; HWL and BL provided substantial help in preparing materials. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qi Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The authors declare that the experiments comply with the current laws of the country in which they were performed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Tong, C., Li, H. et al. Cytogenetic identification and molecular marker development of a novel wheat–Thinopyrum ponticum translocation line with powdery mildew resistance. Theor Appl Genet 135, 2041–2057 (2022). https://doi.org/10.1007/s00122-022-04092-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-022-04092-1

Navigation