Skip to main content
Log in

The branchless gene Clbl in watermelon encoding a TERMINAL FLOWER 1 protein regulates the number of lateral branches

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A SNP mutation in Clbl gene encoding TERMINAL FLOWER 1 protein is responsible for watermelon branchless.

Abstract

Lateral branching is one of the most important traits, which directly determines plant architecture and crop productivity. Commercial watermelon has the characteristics of multiple lateral branches, and it is time-consuming and labor-costing to manually remove the lateral branches in traditional watermelon cultivation. In our present study, a lateral branchless trait was identified in watermelon material WCZ, and genetic analysis revealed that it was controlled by a single recessive gene, which named as Clbl (Citrullus lanatus branchless). A bulked segregant sequencing (BSA-seq) and linkage analysis was conducted to primarily map Clbl on watermelon chromosome 4. Next-generation sequencing-aided marker discovery and a large mapping population consisting of 1406 F2 plants were used to further map Clbl locus into a 9011-bp candidate region, which harbored only one candidate gene Cla018392 encoding a TERMINAL FLOWER 1 protein. Sequence comparison of Cla018392 between two parental lines revealed that there was a SNP detected from C to A in the coding region in the branchless inbred line WCZ, which resulted in a mutation from alanine (GCA) to glutamate (GAA) at the fourth exon. A dCAPS marker was developed from the SNP locus, which was co-segregated with the branchless phenotype in both BC1 and F2 population, and it was further validated in 152 natural watermelon accessions. qRT-PCR and in situ hybridization showed that the expression level of Cla018392 was significantly reduced in the axillary bud and apical bud in branchless line WCZ. Ectopic expression of ClTFL1 in Arabidopsis showed an increased number of lateral branches. The results of this study will be helpful for better understanding the molecular mechanism of lateral branch development in watermelon and for the development of marker-assisted selection (MAS) for new branchless watermelon cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178

    Article  CAS  PubMed  Google Scholar 

  • Aguilar-Martinez JA, Poza-Carrion C, Cubas P (2007) Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19:458–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J (2007) DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J 51:1019–1029

    Article  CAS  PubMed  Google Scholar 

  • Beveridge CA (2000) Long-distance signalling and a mutational analysis of branching in pea. Plant Growth Regul 32:193–203

    Article  CAS  Google Scholar 

  • Beveridge CA, Dun EA, Rameau C (2009) Pea has its tendrils in branching discoveries spanning a century from auxin to strigolactones. Plant Physiol 151:985–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun N, de Saint GA, Pillot JP, Boutet-Mercey S, Dalmais M, Antoniadi I, Li X, Maia-Grondard A, Le Signor C, Bouteiller N, Luo D, Bendahmane A, Turnbull C, Rameau C (2012) The Pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching. Plant Physiol 158:225–238

    Article  CAS  PubMed  Google Scholar 

  • Chia JM, Song C, Bradbury PJ, Costich D, de Leon N, Doebley J, Elshire RJ, Gaut B, Geller L, Glaubitz JC, Gore M, Guill KE, Holland J, Hufford MB, Lai J, Li M, Liu X, Lu Y, McCombie R, Nelson R, Poland J, Prasanna BM, Pyhajarvi T, Rong T, Sekhon RS, Sun Q, Tenaillon MI, Tian F, Wang J, Xu X, Zhang Z, Kaeppler SM, Ross-Ibarra J, McMullen MD, Buckler ES, Zhang G, Xu Y, Ware D (2012) Maize HapMap2 identifies extant variation from a genome in flux. Nature Genet 44:803–807

    Article  CAS  PubMed  Google Scholar 

  • Cline M (1997) Concepts and terminology of apical dominance. Am J Bot 84:1064

    Article  CAS  PubMed  Google Scholar 

  • Danilevskaya ON, Meng X, Ananiev EV (2010) Concerted modification of flowering time and inflorescence architecture by ectopic expression of TFL1-like genes in maize. Plant Physiol 153:238–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhanasekar P, Reddy KS (2015) A novel mutation in TFL1 homolog affecting determinacy in cowpea (Vigna unguiculata). Mol Genet Genomics 290:55–65

    Article  CAS  PubMed  Google Scholar 

  • Dou J, Zhao S, Lu X, He N, Zhang L, Ali A, Kuang H, Liu W (2018) Genetic mapping reveals a candidate gene (ClFS1) for fruit shape in watermelon (Citrullus lanatus L.). Theor Appl Genet 131:947–958

    Article  CAS  PubMed  Google Scholar 

  • Dun EA, de Saint GA, Rameau C, Beveridge CA (2012) Antagonistic action of strigolactone and cytokinin in bud outgrowth control. Plant Physiol 158:487–498

    Article  CAS  PubMed  Google Scholar 

  • Finlayson SA (2007) Arabidopsis TEOSINTE BRANCHED1-LIKE 1 regulates axillary bud outgrowth and is homologous to monocot TEOSINTE BRANCHED1. Plant Cell Physiol 48:667–677

    Article  CAS  PubMed  Google Scholar 

  • Gebremeskel H, Dou J, Li B, Zhao S, Muhammad U, Lu X, He N, Liu W (2020) Molecular mapping and candidate gene analysis for GA3 responsive short internode in watermelon (Citrullus lanatus). Int J Mol Sci 21:290

    Article  CAS  Google Scholar 

  • Gonzalez-Grandio E, Pajoro A, Franco-Zorrilla JM, Tarancon C, Immink RGH, Cubas P (2017) Abscisic acid signaling is controlled by a BRANCHED1/HD-ZIP I cascade in Arabidopsis axillary buds. PNAS 114:245–254

    Article  Google Scholar 

  • Greb T, Clarenz O, Schafer E, Muller D, Herrero R, Schmitz G, Theres K (2003) Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Gene Dev 17:1175–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, Zheng Y, Mao L, Ren Y, Wang Z, Min J, Guo X, Murat F, Ham BK, Zhang Z, Gao S, Huang M, Xu Y, Zhong S, Bombarely A, Mueller LA, Zhao H, He H, Zhang Y, Zhang Z, Huang S, Tan T, Pang E, Lin K, Hu Q, Kuang H, Ni P, Wang B, Liu J, Kou Q, Hou W, Zou X, Jiang J, Gong G, Klee K, Schoof H, Huang Y, Hu X, Dong S, Liang D, Wang J, Wu K, Xia Y, Zhao X, Zheng Z, Xing M, Liang X, Huang B, Lv T, Wang J, Yin Y, Yi H, Li R, Wu M, Levi A, Zhang X, Giovannoni JJ, Wang J, Li Y, Fei Z, Xu Y (2013) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nature Genet 45:51–58

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Zhao S, Sun H, Wang X, Wu S, Lin T, Ren Y, Gao L, Deng Y, Zhang J, Lu X, Zhang H, Shang J, Gong G, Wen C, He N, Tian S, Li M, Liu J, Wang Y, Zhu Y, Jarret R, Levi A, Zhang X, Huang S, Fei Z, Liu W, Xu Y (2019) Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits. Nature Genet 51:1616–1623

    Article  CAS  PubMed  Google Scholar 

  • Hayward A, Stirnberg P, Beveridge C, Leyser O (2009) Interactions between auxin and strigolactone in shoot branching control. Plant Physiol 151:400–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubbard L, McSteen P, Doebley J, Hake S (2002) Expression patterns and mutant phenotype of teosinte branched1 correlate with growth suppression in maize and teosinte. Genetics 162:1927–1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen CS, Salchert K, Nielsen KK (2001) A TERMINAL FLOWER1-like gene from perennial ryegrass involved in floral transition and axillary meristem identity. Plant Physiol 125:1517–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson X, Brcich T, Dun EA, Goussot M, Haurogne K, Beveridge CA, Rameau C (2006) Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals. Plant Physiol 142:1014–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong Q, Yuan J, Gao L, Zhao L, Cheng F, Huang Y, Bie Z (2015) Evaluation of appropriate reference genes for gene expression normalization during watermelon fruit development. PLoS ONE 10:e0130865

    Article  PubMed  PubMed Central  Google Scholar 

  • Lam HM, Xu X, Liu X, Chen W, Yang G, Wong FL, Li MW, He W, Qin N, Wang B, Li J, Jian M, Wang J, Shao G, Wang J, Sun SS, Zhang G (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nature Genet 42:1053–1059

    Article  CAS  PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XY, Qian Q, Fu ZM, Wang YH, Xiong GS, Zeng DL, Wang XQ, Liu XF, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li JY (2003) Control of tillering in rice. Nature 422:618–621

    Article  CAS  PubMed  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAM tools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Li B, Lu X, Gebremeskel H, Zhao S, He N, Yuan P, Gong C, Mohammed U, Liu W (2019a) Genetic mapping and discovery of the candidate gene for black seed coat color in watermelon (Citrullus lanatus). Front Plant Sci 10:1689

    Article  PubMed  Google Scholar 

  • Li B, Zhao S, Dou J, Ali A, Gebremeskel H, Gao L, He N, Lu X, Liu W (2019b) Genetic mapping and development of molecular markers for a candidate gene locus controlling rind color in watermelon. Theor Appl Genet 132:2741–2753

    Article  CAS  PubMed  Google Scholar 

  • Li B, Gao JX, Chen J, Wang ZX, Shen WH, Yi B, Wen J, Ma CH, Shen JX, Fu TD, Tu JX (2020) Identification and fine mapping of a major locus controlling branching in Brassica napus. Theor Appl Genet 133:771–783

    Article  CAS  PubMed  Google Scholar 

  • Liao N, Hu Z, Li Y, Hao J, Chen S, Xue Q, Ma Y, Zhang K, Mahmoud A, Ali A, Malangisha GK, Lyu X, Yang J, Zhang M (2020) Ethylene-responsive factor 4 is associated with the desirable rind hardness trait conferring cracking resistance in fresh fruits of watermelon. Plant Biotechnol J 18:1066–1077

    Article  CAS  PubMed  Google Scholar 

  • Lin T, Zhu GT, Zhang JH, Xu XY, Yu QH, Zheng Z, Zhang ZH, Lun YY, Li S, Wang XX, Huang ZJ, Li JM, Zhang CZ, Wang TT, Zhang YY, Wang AX, Zhang YC, Lin K, Li CY, Xiong GS, Xue YB, Mazzucato A, Causse M, Fei ZJ, Giovannoni JJ, Chetelat RT, Zamir D, Stadler T, Li JF, Ye ZB, Du YC, Huang SW (2014) Genomic analyses provide insights into the history of tomato breeding. Nature Genet 46:1220–1226

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu HF, Lin T, Klein J, Wang SH, Qi JJ, Zhou Q, Sun JJ, Zhang ZH, Weng YQ, Huang SW (2014) QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theor Appl Genet 127:1491–1499

    Article  PubMed  Google Scholar 

  • Lu Z, Shao GN, Xiong JS, Jiao YQ, Wang J, Liu GF, Meng XB, Liang Y, Xiong GS, Wang YH, Li JY (2015) MONOCULM 3, an ortholog of WUSCHEL in rice, is required for tiller bud formation. J Genet Genomics 42:71–78

    Article  PubMed  Google Scholar 

  • Martin-Trillo M, Grandio EG, Serra F, Marcel F, Rodriguez-Buey ML, Schmitz G, Theres K, Bendahmane A, Dopazo H, Cubas P (2011) Role of tomato BRANCHED1-like genes in the control of shoot branching. Plant J 67:701–714

    Article  CAS  PubMed  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohamed R, Wang CT, Ma C, Shevchenko O, Dye SJ, Puzey JR, Etherington E, Sheng X, Meilan R, Strauss ST, Brunner AM (2010) Populus CEN/TFL1 regulates first onset of flowering, axillary meristem identity and dormancy release in Populus. Plant J 62:674–688

    Article  CAS  PubMed  Google Scholar 

  • Moraes TS, Dornelas MC, Martinelli AP (2019) FT/TFL1: calibrating plant architecture. Front Plant Sci 10:97

    Article  PubMed  PubMed Central  Google Scholar 

  • Muller D, Schmitz G, Theres K (2006) Blind homologous R2R3-MYB genes control the pattern of lateral meristem initiation in Arabidopsis. Plant Cell 18:586–597

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakagawa M, Shimamoto K, Kyozuka J (2002) Overexpression of RCN1 and RCN2, rice TERMINAL FLOWER 1/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice. Plant J 29:743–750

    Article  CAS  PubMed  Google Scholar 

  • Neff MM, Neff JD, Chory J, Pepper AE (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J 14:387–392

    Article  CAS  PubMed  Google Scholar 

  • Pnueli L, Carmel-Goren L, Hareven D, Gutfinger T, Alvarez J, Ganal M, Zamir D, Lifschitz E (1998) The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 125:1979–1989

    Article  CAS  PubMed  Google Scholar 

  • Porebski S, Bailey L, Baum B (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep 15:8–15

    Article  CAS  Google Scholar 

  • Qi JJ, Liu X, Shen D, Miao H, Xie BY, Li XX, Zeng P, Wang SH, Shang Y, Gu XF, Du YC, Li Y, Lin T, Yuan JH, Yang XY, Chen JF, Chen HM, Xiong XY, Huang K, Fei ZJ, Mao LY, Tian L, Stadler T, Renner SS, Kamoun S, Lucas WJ, Zhang ZH, Huang SW (2013) A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nature Genet 45:1510-U1149

    Article  CAS  PubMed  Google Scholar 

  • Ratcliffe OJ, Amaya IA, Vincent CA, Rothstein S, Bradley DJ (1998) A common mechanism controls the life cycle and architecture of plants. Development 125:1609–1615

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, Zhao H, Kou Q, Jiang J, Guo S, Zhang H, Hou W, Zou X, Sun H, Gong G, Levi A, Xu Y (2012) A high resolution genetic map anchoring scaffolds of the sequenced watermelon genome. PLoS ONE 7:e29453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren Y, Guo S, Zhang J, He H, Sun H, Tian S, Gong G, Zhang H, Levi A, Tadmor Y, Xu Y (2018) A tonoplast sugar transporter underlies a sugar accumulation QTL in watermelon. Plant Physiol 176:836–850

    Article  CAS  PubMed  Google Scholar 

  • Sachs T, Thimann V (1967) The role of auxins and cytokinins in the release of buds. Am J Bot 54:136–144

    Article  CAS  Google Scholar 

  • Schmitz G, Theres K (2005) Shoot and inflorescence branching. Currt Opin Plant Biol 8:506–511

    Article  CAS  Google Scholar 

  • Schmitz G, Tillmann E, Carriero F, Fiore C, Cellini F, Theres K (2002) The tomato Blind gene encodes a MYB transcription factor that controls the formation of lateral meristems. PNAS 99:1064–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shannon S, Meeks-Wagner DR (1991) A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell 3:877–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen JJ, Zhang YQ, Ge DF, Wang ZY, Song WY, Gu R, Che G, Cheng ZH, Liu RY, Zhang XL (2019) CsBRC1 inhibits axillary bud outgrowth by directly repressing the auxin efflux carrier CsPIN3 in cucumber. PNAS 116:17105–17114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi P, Guy KM, Wu W, Fang B, Yang J, Zhang M, Hu Z (2016) Genome-wide identification and expression analysis of the ClTCP transcription factors in Citrullus lanatus. BMC Plant Biol 16:85

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva Ferreira D, Kevei Z, Kurowski T, de Noronha Fonseca ME, Mohareb F, Boiteux LS, Thompson AJ (2018) BIFURCATE FLOWER TRUSS: a novel locus controlling inflorescence branching in tomato contains a defective MAP kinase gene. J Exp Bot 69:2581–2593

    Article  PubMed  PubMed Central  Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    Article  CAS  PubMed  Google Scholar 

  • Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M, Ueguchi C (2003) The OsTB1 gene negatively regulates lateral branching in rice. Plant J 33:513–520

    Article  CAS  PubMed  Google Scholar 

  • Tucker DJ, Mansfield TA (1972) Effects of light quality on apical dominance in Xanthium strumarium and the associated changes in endogenous levels of abscisic acid and cytokinins. Planta 102:140–151

    Article  CAS  Google Scholar 

  • Vimarsha HS, Sowjanya MS, Rajmohan K, Swapna A (2014) Attfl-1 gene homolog in spike branching black pepper type (Piper nigrum L.) and local variety karuimunda. J Medicl Plants Stud 2:1–4

    Google Scholar 

  • Wang Y, Sun F, Gao Q, Zhang Y, Wang N, Zhang W (2017) Auxins regulations of branched spike development and expression of TFL, a LEAFY-Like gene in branched spike wheat (Triticum aestivum). J Agr Sci 9:27–36

    CAS  Google Scholar 

  • Wang B, Smith SM, Li JY (2018) Genetic regulation of shoot architecture. Annu Rev Plant Biol 69:437–468

    Article  CAS  PubMed  Google Scholar 

  • Wei C, Chen X, Wang Z, Liu Q, Li H, Zhang Y, Ma J, Yang J, Zhang X (2017) Genetic mapping of the LOBED LEAF 1 (ClLL1) gene to a 127.6-kb region in watermelon (Citrullus lanatus L.). PLoS ONE 12:0180741

    Article  Google Scholar 

  • Wei C, Zhu C, Yang L, Zhao W, Ma R, Li H, Zhang Y, Ma J, Yang J, Zhang X (2019a) A point mutation resulting in a 13bp deletion in the coding sequence of Cldf leads to a GA-deficient dwarf phenotype in watermelon. Hortic Res 6:132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei C, Zhang R, Yang X, Zhu C, Li H, Zhang Y, Ma J, Yang J, Zhang X (2019b) Comparative analysis of calcium-dependent protein kinase in Cucurbitaceae and expression studies in watermelon. Int J Mol Sci 20:10

    Article  Google Scholar 

  • Wen C, Zhao W, Liu W, Yang L, Wang Y, Liu X, Xu Y, Ren H, Guo Y, Li C, Li J, Weng Y, Zhang X (2019) CsTFL1 inhibits determinate growth and terminal flower formation through interaction with CsNOT2a in cucumber. Development 146:14

    Google Scholar 

  • Weng L, Bai X, Zhao F, Li R, Xiao H (2016) Manipulation of flowering time and branching by overexpression of the tomato transcription factor SlZFP2. Plant Biotechnol J 14:2310–2321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Nicolas M, Zhang JZ, Yu H, Guo DS, Yuan RR, Zhang TT, Yang JZ, Cubas P, Qin GJ (2018) The TIE1 transcriptional repressor controls shoot branching by directly repressing BRANCHED1 in Arabidopsis. PLoS Genet 14:e1007296

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang SH, Hu WJ, Wang LP, Lin CF, Cong B, Sun CR, Luo D (2005) TFL1/CEN-like genes control intercalary meristem activity and phase transition in rice. Plant Sci 168:1393–1408

    Article  CAS  Google Scholar 

  • Zhao WS, Gu R, Che G, Cheng ZH, Zhang XL (2018) CsTFL1b may regulate the flowering time and inflorescence architecture in cucumber (Cucumis sativus L.). Biochem Bioph Res Co 499:307–313

    Article  CAS  Google Scholar 

  • Zhu H, Song P, Koo DH, Guo L, Li Y, Sun S, Weng Y, Yang L (2016) Genome wide characterization of simple sequence repeats in watermelon genome and their application in comparative mapping and genetic diversity analysis. BMC Genomics 17:557

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Zhang M, Sun S, Yang S, Li J, Li H, Yang H, Zhang K, Hu J, Liu D, Yang L (2019) A single nucleotide deletion in an ABC Transporter gene leads to a dwarf phenotype in watermelon. Front Plant Sci 10:1399

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (31872133, 31972427, 316721787, 32102389), the Agricultural Science and Technology Innovation Program (CAAS-ASTIP-2021-ZFRI), the Project for Scientific and Technological Activities of Overseas Students of Henan Province, the Zhongyuan Youth Talent Support Program (ZYQR201912161), the Program for Science & Technology Innovation Talents in Universities of Henan Province (21HASTIT038), the China Agriculture Research System (CARS-25-03), the Key Scientific and Technological Project of Henan Province (202102110045) and the Science and Technology Innovation Fund of Henan Agricultural University (KJCX2021A14).

Author information

Authors and Affiliations

Authors

Contributions

J Dou, H Yang and D Sun performed phenotyping in segregating population and gene clone. S Zhao, X Lu, S Sun, C Ma and D Liu analyzed the experimental data. H Yang, S Yang and H Zhu contributed to in situ hybridization and ectopic expression. L Yang and W Liu conceived the research and designed the experiments. J Dou and L Yang wrote the manuscript. All authors reviewed and approved this submission.

Corresponding authors

Correspondence to Wenge Liu or Luming Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Hong-Qing Ling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

122_2021_3952_MOESM1_ESM.jpg

Fig. S1 Validation of Clbl co-segregation dCAPS10 marker in BC1P2 population. Genotyping analysis revealed that 38 normal branching individuals were heterozygous plants (Het), whereas 31 branchless individuals were homozygous recessive plants (Null) (JPG 438 KB)

122_2021_3952_MOESM2_ESM.jpg

Fig. S2 Validation of Clbl co-segregation dCAPS10 marker in 152 natural watermelon accessions. Genotyping analysis revealed that all the 152 normal branching individuals were dominant homozygous plants (JPG 1617 KB)

Fig. S3 The allele diversity analysis of 32 watermelon accessions and branchless material WCZ (JPG 2462 KB)

Fig. S4 Network analysis of AtTFL1 proteins (JPG 629 KB)

122_2021_3952_MOESM5_ESM.jpg

Fig. S5 Conserved motif analysis of Cucurbitaceae TFL1 proteins. Total five distinct motifs were identified; motif 1 and motif 3 were identified encoding PEBP motif which was the typical motif of TFL1 protein family (JPG 3751 KB)

122_2021_3952_MOESM6_ESM.jpg

Fig. S6 The test of ClTFL1/Cltfl1 transcriptional auto-activation. a, b ClTFL1 has transcriptional auto-activation. c, d The mutant Cltfl1 did not have transcriptional auto-activation (JPG 708 KB)

Supplementary file7 (XLSX 28 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, J., Yang, H., Sun, D. et al. The branchless gene Clbl in watermelon encoding a TERMINAL FLOWER 1 protein regulates the number of lateral branches. Theor Appl Genet 135, 65–79 (2022). https://doi.org/10.1007/s00122-021-03952-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-03952-6

Navigation