Skip to main content
Log in

Identification and candidate gene mining of HvSS1, a novel qualitative locus on chromosome 6H, regulating the uppermost internode elongation in barley (Hordeum vulgare L.)

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A novel qualitative locus regulating the uppermost internode elongation of barley was identified and mapped on 6H, and the candidate gene mining was performed by employing various barley genomic resources.

Abstract

The stem of grass crops, such as barley and wheat, is composed of several interconnected internodes. The extent of elongation of these internodes determines stem height, and hence lodging, canopy architecture, and grain yield. The uppermost internode (UI) is the last internode to elongate. Its elongation contributes largely to stem height and facilitates spike exsertion, which is crucial for final grain yield. Despite the molecular mechanism underlying regulation of UI elongation was extensively investigated in rice, little is known in barley. In this study, we characterized a barley spontaneous mutant, Sheathed Spike 1 (SS1), showing significantly shortened UI and sheathed spike (SS). The extension of UI parenchyma cell in SS1 was significantly suppressed. Exogenous hormone treatments and RNA-seq analysis indicated that the suppression of UI elongation is possibly related to insufficient content of endogenous bioactive gibberellin. Genetic analysis showed that SS1 is possibly controlled by a qualitative dominant nuclear factor. Bulked segregant analysis and further molecular marker mapping identified a novel major locus, HvSS1, in a recombination cold spot expanding 173.44–396.33 Mb on chromosome 6H. The candidate gene mining was further conducted by analyzing sequence differences, spatiotemporal expression patterns, and variant distributions of genes in the candidate interval by employing various barley genomic resources of worldwide collections of barley accessions. This study made insight into genetic control of UI elongation in barley and laid a solid foundation for further gene cloning and functional characterization. The results obtained here also provided valuable information for similar research in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvarez RV, Pongor LS, Marino-Ramirez L, Landsman D (2019) TPMCalculator: one-step software to quantify mRNA abundance of genomic features. Bioinformatics 35:1960–1962

    Article  CAS  Google Scholar 

  • Ashikari M, Wu JZ, Yano M, Sasaki T, Yoshimura A (1999) Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the alpha-subunit of GTP-binding protein. Proc Natl Acad Sci USA 96:10284–10289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bardenas EA (1965) The morphology and varietal characteristics of the rice plant. Technical Bulletin. International Rice Research Institute, Manila

    Google Scholar 

  • Brinton J, Simmonds J, Minter F, Leverington-Waite M, Snape J, Uauy C (2017) Increased pericarp cell length underlies a major quantitative trait locus for grain weight in hexaploid wheat. New Phytol 215:1026–1038

    Article  CAS  PubMed  Google Scholar 

  • Chen H-J, Wang S-J (2008) Molecular regulation of sink-source transition in rice leaf sheaths during the heading period. Acta Physiol Plant 30:639–649

    Article  CAS  Google Scholar 

  • Chiang C, Layer RM, Faust GG, Lindberg MR, Rose DB, Garrison EP, Marth GT, Quinlan AR, Hall IM (2015) SpeedSeq: ultra-fast personal genome analysis and interpretation. Nat Methods 12:966–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho E, Zambryski PC (2011) ORGAN BOUNDARY1 defines a gene expressed at the junction between the shoot apical meristem and lateral organs. Proc Natl Acad Sci USA 108:2154–2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cingolani P, Platts A, Wang LL, Coon M, Tung N, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w(1118); iso-2; iso-3. Fly 6:80–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng Q, Kong Z, Wu X, Ma S, Yuan Y, Jia H, Ma Z (2019) Cloning of a COBL gene determining brittleness in diploid wheat using a MapRseq approach. Plant Sci 285:141–150

    Article  CAS  PubMed  Google Scholar 

  • Faust GG, Hall IM (2014) SAMBLASTER: fast duplicate marking and structural variant read extraction. Bioinformatics 30:2503–2505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao S, Fang J, Xu F, Wang W, Chu C (2016) Rice HOX12 regulates panicle exsertion by directly modulating the expression of ELONGATED UPPERMOST INTERNODE1. Plant Cell 28:680–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrison E, Marth G (2012) Haplotype-based variant detection from short-read sequencing. arXiv:1207.3907 [q-bio.GN]

  • Hao C, Jiao C, Hou J, Li T, Liu H, Wang Y, Zheng J, Liu H, Bi Z, Xu F, Zhao J, Ma L, Wang Y, Majeed U, Liu X, Appels R, Maccaferri M, Tuberosa R, Lu H, Zhang X (2020) Resequencing of 145 landmark cultivars reveals asymmetric sub-genome selection and strong founder genotype effects on wheat breeding in China. Mol Plant 13:1733–1751

    Article  CAS  PubMed  Google Scholar 

  • Hedden P (2003) The genes of the Green Revolution. Trends Genet 19:5–9

    Article  CAS  PubMed  Google Scholar 

  • Hempel FD, Feldman LJ (1994) Bi-directional in florescence development in Arabidopsis thaliana: acropetal initiation of flowers and basipetal initiation of paraclades. Planta 192:276–286

    Article  Google Scholar 

  • Jossier M, Bouly J-P, Meimoun P, Arjmand A, Lessard P, Hawley S, Grahame Hardie D, Thomas M (2009) SnRK1 (SNF1-related kinase 1) has a central role in sugar and ABA signalling in Arabidopsis thaliana. Plant J 59:316–328

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357-U121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirby EJM, Appleyard M, Simpson NA (1994) Co-ordination of stem elongation and Zadoks growth stages with leaf emergence in wheat and barley. J Agric Sci 122:21–29

    Article  Google Scholar 

  • Kohorn BD, Kohorn SL (2012) The cell wall-associated kinases, WAKs, as pectin receptors. Front Plant Sci 3:88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lally D, Ingmire P, Tong HY, He ZH (2001) Antisense expression of a cell wall-associated protein kinase, WAK4, inhibits cell elongation and alters morphology. Plant Cell 13:1317–1331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee M, Dong X, Song H, Yang JY, Kim S, Hur Y (2020) Molecular characterization of Arabidopsis thaliana LSH1and LSH2 genes. Genes & Genomics 42:1151–1162

    Article  CAS  Google Scholar 

  • Li C, Tang H, Luo W, Zhang X, Mu Y, Deng M, Liu Y, Jiang Q, Chen G, Wang J, Qi P, Pu Z, Jiang Y, Wei Y, Zheng Y, Lan X, Ma J (2020) A novel, validated, and plant height-independent QTL for spike extension length is associated with yield-related traits in wheat. Theor Appl Genet 133:3381–3393

    Article  CAS  PubMed  Google Scholar 

  • Liang J, Chen X, Deng G, Pan Z, Zhang H, Li Q, Yang K, Long H, Yu M (2017) Dehydration induced transcriptomic responses in two Tibetan hulless barley (Hordeum vulgare var. nudum) accessions distinguished by drought tolerance. BMC Genomics 18:775

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo AD, Qian Q, Yin HF, Liu XQ, Yin CX, Lan Y, Tang JY, Tang ZS, Cao SY, Wang XJ, Xia K, Fu XD, Luo D, Chu CC (2006) EUI1, encoding a putative cytochrome P450 monooxygenase, regulates internode elongation by modulating gibberellin responses in rice. Plant Cell Physiol 47:181–191

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Sun M, Ding P, Luo W, Zhou X, Yang C, Zhang H, Qin N, Yang Y, Lan X (2017) Genetic identification of QTL for neck length of spike in wheat. Journal of Triticeae Crops 37:319–324

    Google Scholar 

  • Magwene PM, Willis JH, Kelly JK (2011) The statistics of bulk segregant analysis using next generation sequencing. PLoS Comput Biol 7:e1002255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang X-Q, Zhang Q, Barrero RA, Li L, Taudien S, Groth M, Felder M, Hastie A, Simkova H, Stankova H, Vrana J, Chan S, Munoz-Amatrian M, Ounit R, Wanamaker S, Bolser D, Colmsee C, Schmutzer T, Aliyeva-Schnorr L, Grasso S, Tanskanen J, Chailyan A, Sampath D, Heavens D, Clissold L, Cao S, Chapman B, Dai F, Han Y, Li H, Li X, Lin C, McCooke JK, Tan C, Wang P, Wang S, Yin S, Zhou G, Poland JA, Bellgard MI, Borisjuk L, Houben A, Dolezel J, Ayling S, Lonardi S, Kersey P, Lagridge P, Muehlbauer GJ, Clark MD, Caccamo M, Schulman AH, Mayer KFX, Platzer M, Close TJ, Scholz U, Hansson M, Zhang G, Braumann I, Spannagl M, Li C, Waugh R, Stein N (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:426–433

    Article  CAS  Google Scholar 

  • McKim SM (2019) How plants grow up. J Integr Plant Biol 61:257–277

    Article  PubMed  Google Scholar 

  • Milner SG, Jost M, Taketa S, Mazon ER, Himmelbach A, Oppermann M, Weise S, Knuepffer H, Basterrechea M, Koenig P, Schueler D, Sharma R, Pasam RK, Rutten T, Guo G, Xu D, Zhang J, Herren G, Müller T, Krattinger SG, Keller B, Jiang Y, Gonzalez MY, Zhao Y, Habekuss A, Faerber S, Ordon F, Lange M, Börner A, Graner A, Reif JC, Scholz U, Mascher M, Stein N (2019) Genebank genomics highlights the diversity of a global barley collection. Nat Genet 51:319–326

    Article  CAS  PubMed  Google Scholar 

  • Monat C, Padmarasu S, Lux T, Wicker T, Gundlach H, Himmelbach A, Ens J, Li C, Muehlbauer GJ, Schulman AH, Waugh R, Braumann I, Pozniak C, Scholz U, Mayer KFX, Spannagl M, Stein N, Mascher M (2019) TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools. Genome Biol 20:284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neff MM, Turk E, Kalishman M (2002) Web-based primer design for single nucleotide polymorphism analysis. Trends Genet 18:613–615

    Article  CAS  PubMed  Google Scholar 

  • Nicholls PB, MayLH, (1964) Studies on the growth of the barley apex. II. on the initiation of internode elongation in the in florescence. Aust J Biol Sci 17:619–630

    Article  Google Scholar 

  • Peng JR, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) “Green revolution” genes encode mutant gibberellin response modulators. Nature 400:256–261

    Article  CAS  PubMed  Google Scholar 

  • Qi LL, Gill BS (2001) High-density physical maps reveal that the dominant male-sterile gene Ms3 is located in a genomic region of low recombination in wheat and is not amenable to map-based cloning. Theor Appl Genet 103:998–1006

    Article  CAS  Google Scholar 

  • Rapazote-Flores P, Bayer M, Milne L, Mayer C-D, Fuller J, Guo W, Hedley PE, Morris J, Halpin C, Kam J, McKim SM, Zwirek M, Casao MC, Barakate A, Schreiber M, Stephen G, Zhang R, Brown JWS, Waugh R, Simpson CG (2019) BaRTv1.0: an improved barley reference transcript dataset to determine accurate changes in the barley transcriptome using RNA-seq. BMC Genomics 20:968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren XF, Sun DF, Dong WB, Sun GL, Li CD (2014) Molecular detection of QTL controlling plant height components in a doubled haploid barley population. Genet Mol Res 13:3089–3099

    Article  CAS  PubMed  Google Scholar 

  • Rogers SO, Bendich AJ (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol 5:69–76

    Article  CAS  PubMed  Google Scholar 

  • Russell J, Mascher M, Dawson IK, Kyriakidis S, Calixto C, Freund F, Bayer M, Milne I, Marshall-Griffiths T, Heinen S, Hofstad A, Sharma R, Himmelbach A, Knauft M, van Zonneveld M, Brown JWS, Schmid K, Kilian B, Muehlbauer GJ, Stein N, Waugh R (2016) Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. Nat Genet 48:1024

    Article  CAS  PubMed  Google Scholar 

  • Rutger JN, Carnahan HL (1981) A fourth genetic element to facilitate hybrid cereal production—a recessive tall in rice. Crop Sci 21:373–376

    Article  Google Scholar 

  • Sameri M, Nakamura S, Nair SK, Takeda K, Komatsuda T (2009) A quantitative trait locus for reduced culm internode length in barley segregates as a Mendelian gene. Theor Appl Genet 118:643–652

    Article  CAS  PubMed  Google Scholar 

  • Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) Green revolution: A mutant gibberellin-synthesis gene in rice - New insight into the rice variant that helped to avert famine over thirty years ago. Nature 416:701–702

    Article  CAS  PubMed  Google Scholar 

  • Schnurbusch T (2019) Wheat and barley biology: Towards new frontiers. J Integr Plant Biol 61:198–203

    Article  PubMed  Google Scholar 

  • Shen ZT, Yang CD, He ZH (1987) Studies on eliminating panicle enclosure in WA type MS line of rice (Oryza sativa subsp. Indica). Chin J Rice Sci 1(1):95–99

    Google Scholar 

  • Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA 99:9043–9048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    Article  CAS  PubMed  Google Scholar 

  • Tao Y, Yi X, Lin Y, Wang Z, Wu F, Jiang X, Liu S, Deng M, Ma J, Chen G, Wei Y, Zheng Y, Liu Y (2019) Quantitative trait locus mapping for panicle exsertion length in common wheat using two related recombinant inbred line populations. Euphytica 215:104

    Article  CAS  Google Scholar 

  • Thomas SG, Phillips AL, Hedden P (1999) Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci USA 96:4698–4703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsugama D, Liu S, Takano T (2012) A putative myristoylated 2C-type protein phosphatase, PP2C74, interacts with SnRK1 in Arabidopsis. FEBS Lett 586:693–698

    Article  CAS  PubMed  Google Scholar 

  • Wang DR, Wolfrum EJ, Virk P, Ismail A, Greenberg AJ, McCouch SR (2016) Robust phenotyping strategies for evaluation of stem non-structural carbohydrates (NSC) in rice. J Exp Bot 67:6125–6138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Qin H, Zhou S, Wei P, Zhang H, Zhou Y, Miao Y, Huang R (2020) The ubiquitin-binding protein OsDSK2a mediates seedling growth and salt responses by regulating Gibberellin metabolism in rice. Plant Cell 32:414–428

    Article  CAS  PubMed  Google Scholar 

  • Weiss D, Ori N (2007) Mechanisms of cross talk between gibberellin and other hormones (vol 144, pg 1240, 2007). Plant Physiol 144:2024–2024

    Article  CAS  Google Scholar 

  • Xie Y, Zhang Y, Han J, Luo J, Li G, Huang J, Wu H, Tian Q, Zhu Q, Chen Y, Kawano Y, Liu Y-G, Chen L (2018) The Intronic cis element SE1 recruits trans-acting repressor complexes to repress the expression of ELONGATED UPPERMOST INTERNODE1 in rice. Mol Plant 11:720–735

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Li K, Zhu K, Tian Y, Yu Q, Zhang W, Wang Z (2020) Effect of exogenous plant hormones on agronomic and physiological performance of a leaf early-senescent rice mutantosled. Plant Growth Regul 92:517–533

    Article  CAS  Google Scholar 

  • Xue S, Xu F, Tang M, Zhou Y, Li G, An X, Lin F, Xu H, Jia H, Zhang L, Kong Z, Ma Z (2011) Precise mapping Fhb5, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theor Appl Genet 123:1055–1063

    Article  PubMed  Google Scholar 

  • Yaish MW, El-kereamy A, Zhu T, Beatty PH, Good AG, Bi Y-M, Rothstein SJ (2010) The APETALA-2-like transcription factor OsAP2-39 controls key interactions between abscisic Acid and gibberellin in rice. PLoS Genet 6:e1001098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang R, Zhang S, Huang R, Yang S, Zhang Q (2002) Breeding technology of eui-hybrids of rice. Sci Agric Sin 35:233–237

    CAS  Google Scholar 

  • Yin C, Gan L, Ng D, Zhou X, Xia K (2007) Decreased panicle-derived indole-3-acetic acid reduces gibberellin A(1) level in the uppermost internode, causing panicle enclosure in male sterile rice Zhenshan 97A. J Exp Bot 58:2441–2449

    Article  CAS  PubMed  Google Scholar 

  • Yu M, Mao S-L, Chen G-Y, Pu Z-E, Wei Y-M, Zheng Y-L (2014) QTLs for uppermost internode and spike length in two wheat RIL populations and their affect upon plant height at an individual QTL level. Euphytica 200:95–108

    Article  Google Scholar 

  • Zeng X, Guo Y, Xu Q, Mascher M, Guo G, Li S, Mao L, Liu Q, Xia Z, Zhou J, Yuan H, Tai S, Wang Y, Wei Z, Song L, Zha S, Li S, Tang Y, Bai L, Zhuang Z, He W, Zhao S, Fang X, Gao Q, Yin Y, Wang J, Yang H, Zhang J, Henry RJ, Stein N, Tashi N (2018) Origin and evolution of qingke barley in Tibet. Nat Commun 9:5433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao C, Fan X, Wang W, Zhang W, Han J, Chen M, Ji J, Cui F, Li J (2015) Genetic composition and its transmissibility analysis of wheat candidate backbone parent kenong 9204. Acta Agron Sin 41:574–584

    Article  CAS  Google Scholar 

  • Zhu YY, Nomura T, Xu YH, Zhang YY, Peng Y, Mao BZ, Hanada A, Zhou HC, Wang RX, Li PJ, Zhu XD, Mander LN, Kamiya Y, Yamaguchi S, He ZH (2006) ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell 18:442–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu T, Liang CZ, Meng ZG, Li YY, Wu YY, Guo SD and Zhang R (2017) PrimerServer: a high-throughput primer design and specificity-checking platform. bioRxiv 181941

Download references

Acknowledgments

This work is supported by the Science and Technology Support Project of Sichuan Province, China (2016NZ0103), the Science and Technology Service Network Initiative of the Chinese Academy of Sciences (KFJ-STS-QYZD-2021-22-001), the Major Tibet Science and Technology Projects (XZ2021NA01), and the Innovation Team of Triticeae Crops of Sichuan Province.

Funding

Science and Technology Support Project (2016NZ0103) by Department of Science and Technology of Sichuan Province; Science and Technology Service Network Initiative (KFJ-STS-QYZD-2021-22-001) by Chinese Academy of Sciences; Major Tibet Science and Technology Projects (XZ2021NA01) by Science and Technology Department of Tibet; Innovation Team of Triticeae Crops of Sichuan Province by Sichuan Provincial Department of Agriculture and Rural Affairs;

Author information

Authors and Affiliations

Authors

Contributions

XP, YT, MZ, GD, LL, YS, XQ, JW, and ZY participated in the field trials, sampling and phenotyping; YT, MZ, GD, and XP developed populations and YT (Yawei Tang) provided barley germplasm; XP, MZ, JZ performed genotyping; XP, HL, MZ, and TL analyzed data; XP, HL, HZ, JL, and MY discussed results; PX and HL wrote the manuscript; HL, PX, and XQ revised manuscript; HL, GD, and YT (Yawei Tang) acquired funding. HL conceived and designed the study, and all authors reviewed the manuscript.

Corresponding author

Correspondence to Hai Long.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethics approval

The authors declare that this research has no human and animal participants and that the experiments comply with the current laws of China.

Availability of data and material

All sequence data generated and used in this study has been deposited in The Genome Sequence Archive (GSA) (CRA004088), Beijing Institute of Genomics, Chinese Academy of Sciences, and is publicly available.

Additional information

Communicated by Takao Komatsuda.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10223 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, X., Tang, Y., Zhang, M. et al. Identification and candidate gene mining of HvSS1, a novel qualitative locus on chromosome 6H, regulating the uppermost internode elongation in barley (Hordeum vulgare L.). Theor Appl Genet 134, 2481–2494 (2021). https://doi.org/10.1007/s00122-021-03837-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-03837-8

Navigation