Skip to main content

Advertisement

Log in

Omics resources and omics-enabled approaches for achieving high productivity and improved quality in pea (Pisum sativum L.)

  • Review
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Pea (Pisum sativum L.), a cool-season legume crop grown in more than 85 countries, is the second most important grain legume and one of the major green vegetables in the world. While pea was historically studied as the genetic model leading to the discovery of the laws of genetics, pea research has lagged behind that of other major legumes in the genomics era, due to its large and complex genome. The evolving climate change and growing population have posed grand challenges to the objective of feeding the world, making it essential to invest research efforts to develop multi-omics resources and advanced breeding tools to support fast and continuous development of improved pea varieties. Recently, the pea researchers have achieved key milestones in omics and molecular breeding. The present review provides an overview of the recent important progress including the development of genetic resource databases, high-throughput genotyping assays, reference genome, genes/QTLs responsible for important traits, transcriptomic, proteomic, and phenomic atlases of various tissues under different conditions. These multi-faceted resources have enabled the successful implementation of various markers for monitoring early-generation populations as in marker-assisted backcrossing breeding programs. The emerging new breeding approaches such as CRISPR, speed breeding, and genomic selection are starting to change the paradigm of pea breeding. Collectively, the rich omics resources and omics-enable breeding approaches will enhance genetic gain in pea breeding and accelerate the release of novel pea varieties to meet the elevating demands on productivity and quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbo S, Lev-Yadun S, Gopher A (2010) Agricultural origins, centers and noncenters, a Near Eastern reappraisal. Crit Rev Plant Sci 29:317–328

    Article  Google Scholar 

  • Aglawe SB, Barbadikar KM, Mangrauthia SK, Madhav MS (2018) New breeding technique “genome editing” for crop improvement: applications, potentials and challenges. 3 Biotech 8:336

    Article  PubMed  PubMed Central  Google Scholar 

  • Alves-Carvalho S, Aubert G, Carrère S, Cruaud C, Brochot AL, Jacquin F, Klein A, Martin C, Boucherot K, Kreplak J, da Silva C (2015) Full length de novo assembly of RNA-seq data in pea (Pisum sativum L.) provides a gene expression atlas and gives insights into root nodulation in this species. Plant J 84:1–19

    Article  CAS  PubMed  Google Scholar 

  • Annicchiarico P, Nazzicari N, Wei Y, Pecetti L, Brummer EC (2017) Genotyping-by-sequencing and its exploitation for forage and cool-season grain legume breeding. Front Plant Sci 8:679

    Article  PubMed  PubMed Central  Google Scholar 

  • Anwar A, Kim JK (2020) Transgenic breeding approaches for improving abiotic stress tolerance: recent progress and future perspectives. Int J Mol Sci 21:2695

    Article  CAS  PubMed Central  Google Scholar 

  • Araus JL, Kefauver SC, Zaman-Allah M, Olsen MS, Cairns JE (2018) Translating high-throughput phenotyping into genetic gain. Trends Plant Sci 23:451–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnoldi A, Zanoni C, Lammi C, Boschin G (2015) The role of grain legumes in the prevention of hypercholesterolemia and hypertension. Crit Rev Plant Sci 34:144–1468

    Article  CAS  Google Scholar 

  • Aryamanesh N, Byrne O, Hardie DC, Khan T, Siddique KH, Yan G (2012) Large-scale density-based screening for pea weevil resistance in advanced backcross lines derived from cultivated field pea (Pisum sativum) and Pisum fulvum. Crop Pasture Sci 63:612–618

    Article  Google Scholar 

  • Aryamanesh N, Zeng Y, Byrne O, Hardie DC, Al-Subhi AM, Khan T, Siddique KH, Yan G (2014) Identification of genome regions controlling cotyledon, pod wall/seed coat and pod wall resistance to pea weevil through QTL mapping. Theor Appl Genet 127:489–497

    Article  Google Scholar 

  • Aubert G, Morin J, Jacquin F, Loridon K, Quillet MC, Petit A, Rameau C, Lejeune-Hénaut I, Huguet T, Burstin J (2006) Functional mapping in pea, as an aid to the candidate gene selection and for investigating synteny with the model legume Medicago truncatula. Theor Appl Genet 112:1024–1041

    Article  CAS  PubMed  Google Scholar 

  • Aznar-Fernández T, Barilli E, Cobos MJ, Kilian A, Carling J, Rubiales D (2020) Identification of quantitative trait loci (QTL) controlling resistance to pea weevil (Bruchus pisorum) in a high-density integrated DArTseq SNP-based genetic map of pea. Sci Rep 10:33

    Article  PubMed  PubMed Central  Google Scholar 

  • Bahrman N, Hascoët E, Jaminon O, Dépta F, Hû JF, Bouchez O, Lejeune-Hénaut I, Delbreil B, Legrand S (2019) Identification of Genes Differentially Expressed in Response to Cold in Pisum sativum Using RNA Sequencing Analyses. Plants 8:288

    Article  CAS  PubMed Central  Google Scholar 

  • Bani M, Rubiales D, Rispail N (2012) A detailed evaluation method to identify sources of quantitative resistance to Fusarium oxysporum f. sp. pisi race 2 within a Pisum spp. germplasm collection. Plant Pathol 61:532–542

    Article  Google Scholar 

  • Bani M, Pérez-De-Luque A, Rubiales D, Rispail N (2018) Physical and Chemical Barriers in Root Tissues Contribute to Quantitative Resistance to Fusarium oxysporum f. sp. pisi in Pea. Front Plant Sci 9:199

    Article  PubMed  PubMed Central  Google Scholar 

  • Banniza S, Hashemi P, Warkentin TD, Vandenberg A, Davis AR (2005) The relationships among lodging, stem anatomy, degree of lignification, and resistance to mycosphaerella blight in field pea (Pisum sativum). Can J Bot 83:954–967

    Article  Google Scholar 

  • Barilli E, Sillero JC, Fernández-Aparicio M, Rubiales D (2009) Identification of resistance to Uromyces pisi (Pers.) Wint. in Pisum spp. germplasm. Field Crops Res 114:198–203

    Article  Google Scholar 

  • Barilli E, Satovic Z, Rubiales D, Torres AM (2010) Mapping of quantitative trait loci controlling partial resistance against rust incited by Uromyces pisi (Pers.) Wint. in a Pisum fulvum L. intraspecific cross. Euphytica 175:151–159

    Article  CAS  Google Scholar 

  • Barilli E, Cobos MJ, Carrillo E, Kilian A, Carling J, Rubiales D (2018) A High-Density Integrated DArTseq SNP-Based Genetic Map of Pisum fulvum and Identification of QTLs controlling rust resistance. Front Plant Sci 9:167

    Article  PubMed  PubMed Central  Google Scholar 

  • Barilli E, Carrillo-Perdomo E, Cobos MJ, Kilian A, Carling J, Rubiales D (2020) Identification of potential candidate genes controlling pea aphid tolerance in a Pisum fulvum high-density integrated DArTseq SNP-based genetic map. Pest Manag Sci 76:1731–1742

    Article  CAS  PubMed  Google Scholar 

  • Bernet GP, Muñoz-Pomer A, Domínguez-Escribá L, Covelli L, Bernad L, Ramasamy S, Futami R, Sempere JM, Moya A, Llorens C (2011) GyDB mobilomics: LTR retroelements and integrase-related transposons of the pea aphid Acyrthosiphon pisum genome. Mob Genet Elements 1:97–102

    Article  PubMed  PubMed Central  Google Scholar 

  • Bishop TF, Van Eenennaam AL (2020) Genome editing approaches to augment livestock breeding programs. J Exp Biol 223:jeb207159

    Article  PubMed  Google Scholar 

  • Bordat A, Savois V, Nicolas M, Salse J, Chauveau A, Bourgeois M, Potier J, Houtin H, Rond C, Murat F, Marget P (2011) Translational genomics in legumes allowed placing in silico 5460 unigenes on the pea functional map and identified candidate genes in Pisum sativum L.. G3 1:93–103

    Article  CAS  PubMed  Google Scholar 

  • Bourgeois M, Jacquin F, Cassecuelle F, Savois V, Belghazi M, Aubert G, Quillien L, Huart M, Marget P, Burstin J (2011) A PQL (protein quantity loci) analysis of mature pea seed proteins identifies loci determining seed protein composition. Proteomics 11:1581–1594

    Article  CAS  PubMed  Google Scholar 

  • Bourion V, Rizvi SM, Fournier S, de Larambergue H, Galmiche F, Marget P, Duc G, Burstin J (2010) Genetic dissection of nitrogen nutrition in pea through a QTL approach of root, nodule, and shoot variability. Theor Appl Genet 121:71–86

    Article  PubMed  Google Scholar 

  • Boutet G, Alves Carvalho S, Falque M, Peterlongo P, Lhuillier E, Bouchez O, Lavaud C, Pilet-Nayel ML, Rivière N, Baranger A (2016) SNP discovery and genetic mapping using genotyping by sequencing of whole genome genomic DNA from a pea RIL population. BMC Genom 7:121

    Article  Google Scholar 

  • Bueckert RA, Wagenhoffer S, Hnatowich G, Warkentin TD (2015) Effect of heat and precipitation on pea yield and reproductive performance in the field. Can J Plant Sci 95:629–639

    Article  Google Scholar 

  • Burstin J, Marget P, Huart M, Moessner A, Mangin B, Duchene C, Desprez B, Munier-Jolain N, Duc G (2007) Developmental genes have pleiotropic effects on plant morphology and source capacity, eventually impacting on seed protein content and productivity in pea. Plant Physiol 144:768–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burstin J, Gallardo K, Mir RR, Varshney RK, Duc G (2011) Improving protein content and nutrition quality. In: Pratap A, Kumar J (eds) Biology and Breeding of Food Legumes. CAB International, Wallingford CT, pp 314–328

    Chapter  Google Scholar 

  • Byrne OM, Hardie DC, Khan TN, Speijers J, Yan G (2008) Genetic analysis of pod and seed resistance to pea weevil in a Pisum sativum×P. fulvum interspecific cross. Aust J Agric Res 59:854–862

    Article  CAS  Google Scholar 

  • Byrne PF, Volk GM, Gardner C, Gore MA, Simon PW, Smith S (2018) Sustaining the future of plant breeding: the critical role of the USDA-ARS national plant germplasm system. Crop Sci 58:451–468

    Article  Google Scholar 

  • Callaway E (2018) CRISPR plants now subject to tough GM laws in European Union. Nature 560:16

    Article  CAS  PubMed  Google Scholar 

  • Carpenter MA, Goulden DS, Woods CJ, Thomson SJ, Kenel F, Frew TJ, Cooper RD, Timmerman-Vaughan GM (2018) Genomic selection for ascochyta blight resistance in pea. Front Plant Sci 9:1878

    Article  PubMed  PubMed Central  Google Scholar 

  • Carrillo E, Rubiales D, Castillejo MA (2014a) Proteomic analysis of pea (Pisum sativum L.) response during compatible and incompatible interactions with the pea aphid (Acyrthosiphon pisum H.). Plant Mol Biol Rep 32:697–718

    Article  CAS  Google Scholar 

  • Carrillo E, Satovic Z, Aubert G, Boucherot K, Rubiales D, Fondevilla S (2014b) Identification of quantitative trait loci and candidate genes for specific cellular resistance responses against Didymella pinodes in pea. Plant Cell Rep 33:1133–1145

    Article  CAS  PubMed  Google Scholar 

  • Castillejo MÁ, Fernández-Aparicio M, Rubiales D (2012) Proteomic analysis by two-dimensional differential in gel electrophoresis (2D DIGE) of the early response of Pisum sativum to Orobanche crenata. J Exp Bot 63:107–119

    Article  CAS  PubMed  Google Scholar 

  • Castillejo MÁ, Bani M, Rubiales D (2015) Understanding pea resistance mechanisms in response to Fusarium oxysporum through proteomic analysis. Phytochemistry 115:44–58

    Article  CAS  PubMed  Google Scholar 

  • Castillejo MÁ, Fondevilla-Aparicio S, Fuentes-Almagro C, Rubiales D (2020) Quantitative Analysis of Target Peptides Related to Resistance Against Ascochyta Blight (Peyronellaea pinodes) in Pea. J Proteome Res 19:1000–1012

    Article  CAS  PubMed  Google Scholar 

  • Cazzola F, Bermejo CJ, Guindon MF, Cointry E (2020) Speed breeding in pea (Pisum sativum L.), an efficient and simple system to accelerate breeding programs. Euphytica 216:1–1

    Article  Google Scholar 

  • Chand R, Srivastava CP, Singh BD, Sarode SB (2006) Identification and characterization of slow rusting components in pea (Pisum sativum L.). Genet Resour Crop Evol 53:219–224

    Article  Google Scholar 

  • Chen H, Osuna D, Colville L, Lorenzo O, Graeber K, Kuester H, Leubner-Metzger G, Kranner I (2013) Transcriptome-wide mapping of pea seed ageing reveals a pivotal role for genes related to oxidative stress and programmed cell death. PLoS ONE 8:e78471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Zeng Y, Yang Y, Huang L, Tang B, Zhang H, Hao F, Liu W, Li Y, Liu Y, Zhang X (2020) Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nat Commun 11:1–1

    Google Scholar 

  • Cheng P, Holdsworth W, Ma Y, Coyne CJ, Mazourek M, Grusak MA, Fuchs S, McGee RJ (2015) Association mapping of agronomic and quality traits in USDA pea single-plant collection. Mol Breeding 35:75

    Article  Google Scholar 

  • Clulow SA, Matthews P, Lewis BG (1991) Genetic analysis of resistance to Mycosphaerella pinodes in pea seedlings. Euphytica 58:183–189

    Article  Google Scholar 

  • Cobos MJ, Satovic Z, Rubiales D, Fondevilla S (2018) Er3 gene, conferring resistance to powdery mildew in pea, is located in pea LGIV. Euphytica 214:203

    Article  Google Scholar 

  • Coyne CJ, McClendon MT, Walling JG, Timmerman-Vaughan GM, Murray S, Meksem K, Lightfoot DA, Shultz JL, Keller KE, Martin RR, Inglis DA (2007) Construction and characterization of two bacterial artificial chromosome libraries of pea (Pisum sativum L.) for the isolation of economically important genes. Genome 50:871–875

    Article  CAS  PubMed  Google Scholar 

  • Crossa J, Perez-Rodriguez P, Cuevas J, Montesinos-Lopez O, Jarquin D, de los Campos G, Burgueno J, Gonzalez-Camacho JM, PerezElizalde S, Beyene Y, Dreisigacker S, Singh R, Zhang XC, Gowda M, Roorkiwal M, Rutkoski J, Varshney RK (2017) Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci 22:961–975

    Article  CAS  PubMed  Google Scholar 

  • Curtin SJ, Xiong Y, Michno JM, Campbell BW, Stec AO, Čermák T, Starker C, Voytas DF, Eamens AL, Stupar RM (2018) CRISPR/Cas9 and TALENs generate heritable mutations for genes involved in small RNA processing of Glycine max and Medicago truncatula. Plant Biotechnol J 16:1125–1137

    Article  CAS  PubMed  Google Scholar 

  • Dalmais M, Schmidt J, Le Signor C, Moussy F, Burstin J, Savois V, Aubert G, Brunaud V, de Oliveira Y, Guichard C, Thompson R, Bendahmane A (2008) UTILLdb, a Pisum sativum in silico forward and reverse genetics tool. Genome Biol 9:R43

    Article  PubMed  PubMed Central  Google Scholar 

  • Demirer GS, Zhang H, Matos JL, Goh NS, Cunningham FJ, Sung Y, Chang R, Aditham AJ, Chio L, Cho MJ, Staskawicz B, Landry MP (2019) High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat Nanotechnol 14:456–464

    Article  CAS  PubMed  Google Scholar 

  • Desgroux A, L’Anthoëne V, Roux-Duparque M, Rivière JP, Aubert G, Tayeh N, Moussart A, Mangin P, Vetel P, Piriou C, McGee RJ, Coyne CJ, Burstin J, Baranger A, Manzanares-Dauleux M, Bourion V, Pilet-Nayel ML (2016) Genome-wide association mapping of partial resistance to Aphanomyces euteiches in pea. BMC Genomics 17:124

    Article  PubMed  PubMed Central  Google Scholar 

  • Desgroux A, Baudais VN, Aubert V, Le Roy G, de Larambergue H, Miteul H, Aubert G, Boutet G, Duc G, Baranger A, Burstin J, Manzanares-Dauleux M, Pilet-Nayel ML, Bourion V (2018) Comparative genome-wide-association mapping identifies common loci controlling root system architecture and resistance to Aphanomyces euteiches in Pea. Front Plant Sci 8:2195

    Article  PubMed  PubMed Central  Google Scholar 

  • Deulvot C, Charrel H, Marty A, Jacquin F, Donnadieu C, Lejeune-Hénaut I, Burstin J, Aubert G (2010) Highly-multiplexed SNP genotyping for genetic mapping and germplasm diversity studies in pea. BMC Genomics 11:468

    Article  PubMed  PubMed Central  Google Scholar 

  • Dirlewanger E, Isaac PG, Ranade S, Belajouza M, Cousin R, de Vienne D (1994) Restriction fragment length polymorphism analysis of loci associated with disease resistance genes and developmental traits in Pisum sativum L. Theor Appl Genet 88:17–27

    Article  CAS  PubMed  Google Scholar 

  • Domoney C, Knox M, Moreau C, Ambrose M, Palmer S, Smith P, Christodoulou V, Isaac PG, Hegarty M, Blackmore T, Swain M, Ellis N (2013) Exploiting a fast neutron mutant genetic resource in Pisum sativum (pea) for functional genomics. Funct Plant Biol 40:1261–1270

    Article  CAS  PubMed  Google Scholar 

  • Duarte J, Rivière N, Baranger A, Aubert G, Burstin J, Cornet L, Lavaud C, Lejeune-Hénaut I, Martinant JP, Pichon JP, Pilet-Nayel ML (2014) Transcriptome sequencing for high throughput SNP development and genetic mapping in Pea. BMC Genomics 15:126

    Article  PubMed  PubMed Central  Google Scholar 

  • Duc G, Marget P, Page D, Domoney C (2004) Facile breeding markers to lower contents of vicine and convicine in faba bean seeds and trypsin inhibitors in pea seeds. Eur Assoc Animal Prod 110:281–286

    CAS  Google Scholar 

  • Dumont E, Fontaine V, Vuylsteker C, Sellier H, Bodèle S, Voedts N, Devaux R, Frise M, Avia K, Hilbert JL, Bahrman N, Hanocq E, Lejeune-Hénaut I, Delbreil B (2009) Association of sugar content QTL and PQL with physiological traits relevant to frost damage resistance in pea under field and controlled conditions. Theor Appl Genet 118:1561–1571

    Article  CAS  PubMed  Google Scholar 

  • Ellis TH, Turner L, Hellens RP, Lee D, Harker CL, Enard C, Domoney C, Davies DR (1992) Linkage maps in pea. Genetics 130:649–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis N, Hattori C, Cheema J, Donarski J, Charlton A, Dickinson M, Venditti G, Kaló P, Szabó Z, Kiss GB, Domoney C (2018) NMR metabolomics defining genetic variation in pea seed metabolites. Front Plant Sci 9:1022

    Article  PubMed  PubMed Central  Google Scholar 

  • FAOSTAT 2018 online database at < http://www.fao.org/faostat/en/#data>

  • FAOSTAT 2020 online database at < http://www.fao.org/faostat/en/#data>

  • Feng J, Hwang R, Chang KF, Conner RL, Hwang SF, Strelkov SE, Gossen BD, McLaren DL, Xue AG (2011) Identification of microsatellite markers linked to quantitative trait loci controlling resistance to Fusarium root rot in field pea. Can J Plant Sci 91:199–204

    Article  Google Scholar 

  • Fondevilla S, Rubiales D (2012) Powdery mildew control in pea. Rev Agron Sustain Dev 32:401–409

    Article  CAS  Google Scholar 

  • Fondevilla S, Rubiales D, Moreno MT, Torres AM (2008a) Identification and validation of RAPD and SCAR markers linked to the gene Er3 conferring resistance to Erysiphe pisi DC in pea. Mol Breeding 22:193–200

    Article  CAS  Google Scholar 

  • Fondevilla S, Satovic Z, Rubiales D, Moreno MT, Torres AM (2008b) Mapping of quantitative trait loci for resistance to Mycosphaerella pinodes in Pisum sativum subsp. syriacum. Mol Breeding 21:439–454

    Article  CAS  Google Scholar 

  • Fondevilla S, Fernández-Aparicio M, Satovic Z, Emeran AA, Torres AM, Moreno MT, Rubiales D (2010) Identification of quantitative trait loci for specific mechanisms of resistance to Orobanche crenata Forsk. in pea (Pisum sativum L.). Mol Breeding 25:259–272

    Article  CAS  Google Scholar 

  • Fondevilla S, Almeida NF, Satovic Z, Rubiales D, Patto MC, Cubero JI, Torres AM (2011a) Identification of common genomic regions controlling resistance to Mycosphaerella pinodes, earliness and architectural traits in different pea genetic backgrounds. Euphytica 182:43–52

    Article  Google Scholar 

  • Fondevilla S, Küster H, Krajinski F, Cubero JI, Rubiales D (2011b) Identification of genes differentially expressed in a resistant reaction to Mycosphaerella pinodes in pea using microarray technology. BMC Genomics 12:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fondevilla S, Martin-Sanz A, Satovic Z, Dolores Fernandez-Romero M, Rubiales D, Caminero C (2012) Identification of quantitative trait loci involved in resistance to Pseudomonas syringae pv. syringae in pea (Pisum sativum L.). Euphytica 186:805–812

    Article  Google Scholar 

  • Fondevilla S, Rotter B, Krezdorn N, Jüngling R, Winter P, Rubiales D (2014) Identification of genes involved in resistance to Didymella pinodes in pea by deepSuperSAGE transcriptome profiling. Plant Mol Biol Rep 32:258–269

    Article  CAS  Google Scholar 

  • Fondevilla S, Flores F, Emeran AA, Kharrat M, Rubiales D (2017) High productivity of dry pea genotypes resistant to crenate broomrape in Mediterranean environments. Agron Sustain Dev 37:61

    Article  Google Scholar 

  • Franssen SU, Shrestha RP, Bräutigam A, Bornberg-Bauer E, Weber AP (2011) Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing. BMC Genomics 12:227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF III (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gali KK, Liu Y, Sindhu A, Diapari M, Shunmugam ASK, Arganosa G, Daba K, Caron C, Lachagari RVB, Tar’an B, Warkentin TD (2018) Construction of high-density linkage maps for mapping quantitative trait loci for multiple traits in field pea (Pisum sativum L.). BMC Plant Biol 18:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Gali KK, Tar’an B, Madoui MA, van der Vossen E, van Oeveren J, Labadie K, Berges H, Bendahmane A, Lachagari RVB, Burstin J, Warkentin T (2019) Development of a Sequence-Based Reference Physical Map of Pea (Pisum sativum L.). Front Plant Sci 10:323

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghafoor A, McPhee K (2012) Marker assisted selection (MAS) for developing powdery mildew resistant pea cultivars. Euphytica 186:593–607

    Article  CAS  Google Scholar 

  • Ghosh S, Watson A, Gonzalez-Navarro OE, Ramirez-Gonzalez RH, Yanes L, Mendoza-Suárez M, Simmonds J, Wells R, Rayner T, Green P, Hafeez A (2018) Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat Protoc 13:2944–2963

    Article  CAS  PubMed  Google Scholar 

  • Gilpin BJ, McCallum JA, Frew TJ, Timmerman-Vaughan GM (1997) A linkage map of the pea (Pisum sativum L.) genome containing cloned sequences of known function and expressed sequence tags (ESTs). Theor Appl Genet 95:1289–1299

    Article  CAS  Google Scholar 

  • Grantham ME, Brisson JA (2018) Extensive Differential Splicing Underlies Phenotypically Plastic Aphid Morphs. Mol Biol Evol 35:1934–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grønlund M, Olsen A, Johansen EI, Jakobsen I (2010) Protocol: using virus-induced gene silencing to study the arbuscular mycorrhizal symbiosis in Pisum sativum. Plant Methods 6:1–8

    Article  Google Scholar 

  • Guindon MF, Martin E, Zayas A, Cointry E, Cravero V (2016) Evaluation of SRAP markers for mapping of Pisum sativum L. Crop Breed Appl Biot 16:182–188

    Article  CAS  Google Scholar 

  • Hall KJ, Parker JS, Ellis TH, Turner L, Knox MR, Hofer JM, Lu J, Ferrandiz C, Hunter PJ, Taylor JD, Baird K (1997) The relationship between genetic and cytogenetic maps of pea. II. Physical maps of linkage mapping populations. Genome 40:755–769

    Article  CAS  PubMed  Google Scholar 

  • Hamon C, Baranger A, Coyne CJ, McGee RJ, Le Goff I, L’anthoëne V, Esnault R, Rivière JP, Klein A, Mangin P, McPhee KE, Roux-Duparque M, Porter L, Miteul H, Lesné A, Morin G, Onfroy C, Moussart A, Tivoli B, Delourme R, Pilet-Nayel ML (2011) New consistent QTL in pea associated with partial resistance to Aphanomyces euteiches in multiple French and American environments. Theor Appl Genet 123:261–281

    Article  PubMed  Google Scholar 

  • Hamon C, Coyne CJ, McGee RJ, Lesné A, Esnault R, Mangin P, Hervé M, Le Goff I, Deniot G, Roux-Duparque M, Morin G (2013) QTL meta-analysis provides a comprehensive view of loci controlling partial resistance to Aphanomyces euteiches in four sources of resistance in pea. BMC Plant Biol 13:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanocq E, Jeuffroy MH, Lejeune-Henaut I, Munier-Jolain N (2009) Construire des idéotypes pour des systèmes de culture varies en pois d’hiver. Innov Agron 7:14–28

    Google Scholar 

  • Hickey LT, Hafeez AN, Robinson H, Jackson SA, Leal-Bertioli SCM, Tester M, Gao C, Godwin ID, Hayes BJ, Wulff BH (2019) Breeding crops to feed 10 billion. Nat Biotechnol 37:744–754

    Article  CAS  PubMed  Google Scholar 

  • Holdsworth WL, Gazave E, Cheng P, Myers JR, Gore MA, Coyne CJ, McGee RJ, Mazourek M (2017) A community resource for exploring and utilizing genetic diversity in the USDA pea single plant plus collection. Hortic Res 4:17017

    Article  PubMed  PubMed Central  Google Scholar 

  • Humplík JF, Lazár D, Fürst T, Husičková A, Hýbl M, Spíchal L (2015) Automated integrative high-throughput phenotyping of plant shoots: a case study of the cold-tolerance of pea Pisum sativum L. Plant Methods 11:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Iglesias-García R, Prats E, Fondevilla S, Satovic Z, Rubiales D (2015) Quantitative trait loci associated to drought adaptation in pea (Pisum sativum L.). Plant Mol Biol Rep 33:1768–1778

    Article  Google Scholar 

  • Jain S, Weeden NF, Porter LD, Eigenbrode SD, McPhee K (2013) Finding linked markers for efficient selection of pea enation mosaic virus resistance in pea. Crop Sci 53:2392–2399

    Article  Google Scholar 

  • Jha AB, Gali KK, Tar’an B, Warkentin TD (2017) Fine Mapping of QTLs for ascochyta blight resistance in pea using heterogeneous inbred families. Front Plant Sci 8:765

    Article  PubMed  PubMed Central  Google Scholar 

  • Jha UC, Bohra A, Pandey S, Parida SK (2020) Breeding, genetics and genomics approaches for improving Fusarium wilt resistance in major grain legumes. Front Genet 11:1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji J, Zhang C, Sun Z, Wang L, Duanmu D, Fan Q (2019) Genome editing in cowpea Vigna unguiculata using CRISPR-Cas9. Int J Mol Sci 20:2471

    Article  CAS  PubMed Central  Google Scholar 

  • Jiao K, Li X, Guo W, Su S, Luo D (2017) High-Throughput RNA-Seq data analysis of the single nucleotide polymorphisms (SNPs) and Zygomorphic Flower Development in Pea (Pisum sativum L.). Int J Mol Sci 18:2710

    Article  PubMed Central  Google Scholar 

  • Kabir AH, Paltridge NG, Able AJ, Paull JG, Stangoulis JC (2012) Natural variation for Fe-efficiency is associated with up-regulation of Strategy I mechanisms and enhanced citrate and ethylene synthesis in Pisum sativum L. Planta 235:1409–1419

    Article  CAS  PubMed  Google Scholar 

  • Kahlon JG, Jacobsen HJ, Chatterton S, Hassan F, Bowness R, Hall LM (2017) Lack of efficacy of transgenic pea (Pisum sativum L.) stably expressing antifungal genes against Fusarium spp. in three years of confined field trials. GM Crops Food 9:90–108

    Article  Google Scholar 

  • Kamthan A, Chaudhuri A, Kamthan M, Datta A (2016) Genetically modified (GM) crops: milestones and new advances in crop improvement. Theor Appl Genet 129:1639–1655

    Article  CAS  PubMed  Google Scholar 

  • Kaur S, Pembleton LW, Cogan NO, Savin KW, Leonforte T, Paull J, Materne M, Forster JW (2012) Transcriptome sequencing of field pea and faba bean for discovery and validation of SSR genetic markers. BMC Genomics 13:104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan TN, Timmerman-Vaughan GM, Rubiales D, Warkentin TD, Siddique KH, Erskine W, Barbetti MJ (2013) Didymella pinodes and its management in field pea: challenges and opportunities. Field Crops Res 148:61–77

    Article  Google Scholar 

  • Klein A, Houtin H, Rond C, Marget P, Jacquin F, Boucherot K, Huart M, Rivière N, Boutet G, Lejeune-Hénaut I, Burstin J (2014) QTL analysis of frost damage in pea suggests different mechanisms involved in frost tolerance. Theor Appl Genet 127:1319–1330

    Article  PubMed  Google Scholar 

  • Kraft JM, Dunne B, Goulden D, Armstrong S (1998) A search for resistance in peas to Mycosphaerella pinodes. Plant Dis 82:251–253

    Article  PubMed  Google Scholar 

  • Krajewski P, Bocianowski J, Gawłowska M, Kaczmarek Z, Pniewski T, Święcicki W, Wolko B (2012) QTL for yield components and protein content: a multi-environment study of two pea (Pisum sativum L.) populations. Euphytica 183:323–336

    Article  CAS  Google Scholar 

  • Kreplak J, Madoui MA, Cápal P, Novák P, Labadie K, Aubert G, Bayer PE, Gali KK, Syme RA, Main D, Klein A, Bérard A, Vrbová I, Fournier C, d’Agata L, Belser C, Berrabah W, Toegelová H, Milec Z, Vrána J, Lee H, Kougbeadjo A, Térézol M, Huneau C, Turo CJ, Mohellibi N, Neumann P, Falque M, Gallardo K, McGee R, Tar’an B, Bendahmane A, Aury JM, Batley J, Le Paslier MC, Ellis N, Warkentin TD, Coyne CJ, Salse J, Edwards D, Lichtenzveig J, Macas J, Doležel J, Wincker P, Burstin J (2019) A reference genome for pea provides insight into legume genome evolution. Nat Genet 51:1411–1422

    Article  CAS  PubMed  Google Scholar 

  • Kulaeva OA, Zhernakov AI, Afonin AM, Boikov SS, Sulima AS, Tikhonovich IA, Zhukov VA (2017) Pea marker database (PMD)—a new online database combining known pea (Pisum sativum L.) Gene-based markers. PLoS ONE 12:0186713

    Article  Google Scholar 

  • Kwon SJ, Smýkal P, Hu J, Wang M, Kim SJ, McGee RJ, McPhee K, Coyne CJ (2013) User-friendly markers linked to Fusarium wilt race 1 resistance Fw gene for marker-assisted selection in pea. Plant Breed 132:642–648

    Article  CAS  Google Scholar 

  • Lamprecht H (1948) The variation of linkage and the course of crossing over. Agri Hort Genet 6:10–48

    Google Scholar 

  • Laucou V, Haurogné K, Ellis N, Rameau C (1998) Genetic mapping in pea. 1. RAPD-based genetic linkage map of Pisum sativum. Theor Appl Genet 97:905–915

    Article  CAS  Google Scholar 

  • Lavaud C, Lesné A, Piriou C, Le Roy G, Boutet G, Moussart A, Poncet C, Delourme R, Baranger A, Pilet-Nayel ML (2015) Validation of QTL for resistance to Aphanomyces euteiches in different pea genetic backgrounds using near-isogenic lines. Theor Appl Genet 128:2273–2288

    Article  CAS  PubMed  Google Scholar 

  • Lejeune-Hénaut I, Hanocq E, Béthencourt L, Fontaine V, Delbreil B, Morin J, Petit A, Devaux R, Boilleau M, Stempniak JJ, Thomas M, Lainé AL, Foucher F, Baranger A, Burstin J, Rameau C, Giauffret C (2008) The flowering locus Hr colocalizes with a major QTL affecting winter frost tolerance in Pisum sativum L. Theor Appl Genet 116:1105–1116

    Article  PubMed  Google Scholar 

  • Leonforte A, Sudheesh S, Cogan NO, Salisbury PA, Nicolas ME, Materne M, Forster JW, Kaur S (2013) SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.). BMC Plant Biol 13:161

    Article  PubMed  PubMed Central  Google Scholar 

  • Leonova T, Popova V, Tsarev A, Henning C, Antonova K, Rogovskaya N, Vikhnina M, Baldensperger T, Soboleva A, Dinastia E, Dorn M (2020) Does protein glycation impact on the drought-related changes in metabolism and nutritional properties of mature pea (Pisum sativum L.) seeds? Int J Mol Sci 21:567

    Article  CAS  PubMed Central  Google Scholar 

  • Li Z, Liu ZB, Xing A, Moon BP, Koellhoffer JP, Huang L, Ward RT, Clifton E, Falco SC, Cigan AM (2015) Cas9-Guide RNA directed genome editing in soybean. Plant Physiol 169:960–970

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu N, Zhang G, Xu S, Mao W, Hu Q, Gong Y (2015) Comparative transcriptomic analyses of vegetable and grain pea (Pisum sativum L.) seed development. Front Plant Sci 6:1039

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu R, Fang L, Yang T, Zhang X, Hu J, Zhang H, Han W, Hua Z, Hao J, Zong X (2017) Marker-trait association analysis of frost tolerance of 672 worldwide pea (Pisum sativum L.) collections. Sci Rep 7:5919

    Article  PubMed  PubMed Central  Google Scholar 

  • Loridon K, McPhee K, Morin J, Dubreuil P, Pilet-Nayel ML, Aubert G, Rameau C, Baranger A, Coyne C, Lejeune-Hènaut I, Burstin J (2005) Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theor Appl Genet 111:1022–1031

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Coyne CJ, Grusak MA, Mazourek M, Cheng P, Main D, McGee RJ (2017) Genome-wide SNP identification linkage map construction and QTL mapping for seed mineral concentrations and contents in pea (Pisum sativum L.). BMC Plant Biol 17:43

    Article  PubMed  PubMed Central  Google Scholar 

  • Mabrouk Y, Hemissi I, Salem IB, Mejri S, Saidi M, Belhadj O (2018) Potential of rhizobia in improving nitrogen fixation and yields of legumes. Symbiosis 33:107

    Google Scholar 

  • Macas J, Neumann P, Navrátilová A (2007) Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics 8:427

    Article  PubMed  PubMed Central  Google Scholar 

  • Maher MF, Nasti RA, Vollbrecht M, Starker CG, Clark MD, Voytas DF (2020) Plant gene editing through de novo induction of meristems. Nat Biotechnol 38:84–89

    Article  CAS  PubMed  Google Scholar 

  • Marles MA, Warkentin TD, Bett KE (2013) Genotypic abundance of carotenoids and polyphenolics in the hull of field pea (Pisum sativum L.). J Sci Food Agric 93:463–470

    Article  CAS  PubMed  Google Scholar 

  • Maxted N, Ambrose M (2001) Peas Pisum L In Plant genetic resources of legumes in the Mediterranean. Springer, Dordrecht, pp 181–190

    Google Scholar 

  • McPhee KE, Inglis DA, Gundersen B, Coyne CJ (2012) Mapping QTL for Fusarium wilt Race 2 partial resistance in pea (Pisum sativum). Plant Breeding 131:300–306

    Article  CAS  Google Scholar 

  • Meyer DW, Badaruddin M (2001) Frost tolerance of ten seedling legume species at four growth stages. Crop Sci 41:1838–1842

    Article  Google Scholar 

  • Meziadi C, Blanchet S, Richard MM, Pilet-Nayel ML, Geffroy V, Pflieger S (2016) Bean pod mottle virus: a new powerful tool for functional genomics studies in Pisum sativum. Plant Biotechnol J 14:1777–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meziadi C, Blanchet S, Geffroy V, Pflieger S (2017) Virus-Induced Gene Silencing (VIGS) and Foreign gene expression in Pisum sativum L. Using the “One-Step” Bean pod mottle virus (BPMV) Viral Vector. Methods Mol Biol 1654:311–319

    Article  CAS  PubMed  Google Scholar 

  • Mobini SH, Warkentin TD (2016) A simple and efficient method of in vivo rapid generation technology in pea (Pisum sativum L.). Vitro Cell Dev Biol Plant 52:530–536

    Article  CAS  Google Scholar 

  • Moreau C, Hofer JMI, Eléouët M, Sinjushin A, Ambrose M, Skøt K, Blackmore T, Swain M, Hegarty M, Balanzà V, Ferrándiz C, Ellis THN (2018) Identification of Stipules reduced, a leaf morphology gene in pea (Pisum sativum). New Phytol 220:288–299

    Article  CAS  PubMed  Google Scholar 

  • Muel F (2019) Grain legume plant breeding in the EU. Third international legume society conference ILS3, International legume society, Polish Academy of Sciences, pp 34

  • Negawo AT, Aftabi M, Jacobsen HJ, Altosaar I, Hassan FS (2013) Insect resistant transgenic pea expressing cry1Ac gene product from Bacillus thuringiensis. Biol Control 67:293–300

    Article  CAS  Google Scholar 

  • Nguyen GN, Kant S (2018) Improving nitrogen use efficiency in plants: effective phenotyping in conjunction with agronomic and genetic approaches. Funct Plant Biol 45:606–619

    Article  CAS  PubMed  Google Scholar 

  • Nguyen GN, Panozzo J, Spangenberg G, Kant S (2016) Phenotyping approaches to evaluate nitrogen-use efficiency-related traits of diverse wheat varieties under field conditions. Crop Pasture Sci 67:1139–1148

    Article  CAS  Google Scholar 

  • Nguyen GN, Norton SL, Rosewarne GM, James LE, Slater AT (2018) Automated phenotyping for early vigour of field pea seedlings in a controlled environment by colour imaging technology. PLoS ONE 13:e0207788

    Article  PubMed  PubMed Central  Google Scholar 

  • Pflieger S, Richard MM, Blanchet S, Meziadi C, Geffroy V (2013) VIGS technology: an attractive tool for functional genomics studies in legumes. Funct Plant Biol 40:1234–1248

    Article  CAS  PubMed  Google Scholar 

  • Pilet-Nayel L, Muehlbauer FJ, McGee RJ, Kraft JM, Baranger A, Coyne CJ (2002) Quantitative trait loci for partial resistance to Aphanomyces root rot in pea. Theor Appl Genet 106:28–39

    Article  CAS  PubMed  Google Scholar 

  • Pilet-Nayel ML, Muehlbauer FJ, McGee RJ, Kraft JM, Baranger A, Coyne CJ (2005) Consistent Quantitative Trait Loci in Pea for Partial Resistance to Aphanomyces euteiches Isolates from the United States and France. Phytopathology 95:1287–1293

    Article  CAS  PubMed  Google Scholar 

  • Porter LD, Kraft JM, Grünwald NJ (2014) Release of pea germplasm with fusarium resistance combined with desirable yield and anti-lodging traits. J Plant Regist 8:191–194

    Article  Google Scholar 

  • Praça-Fontes MM, Carvalho CR, Clarindo WR (2014) Karyotype revised of Pisum sativum using chromosomal DNA amount. Plant Syst Evol 300:1621–1626

    Article  Google Scholar 

  • Prioul S, Frankewitz A, Deniot G, Morin G, Baranger A (2004) Mapping of quantitative trait loci for partial resistance to Mycosphaerella pinodes in pea (Pisum sativum L.), at the seedling and adult plant stages. Theor Appl Genet 108:1322–1334

    Article  CAS  PubMed  Google Scholar 

  • Quirós Vargas JJ, Zhang C, Smitchger JA, McGee RJ, Sankaran S (2019) Phenotyping of plant biomass and performance traits using remote sensing techniques in pea (Pisum sativum, L). Sensors 19:2031

    Article  Google Scholar 

  • Rai R, Singh AK, Singh BD, Joshi AK, Chand R, Srivastava CP (2011) Molecular mapping for resistance to pea rust caused by Uromyces fabae (Pers.) de-Bary. Theor Appl Genet 123:803–813

    Article  PubMed  Google Scholar 

  • Rispail N, Rubiales D (2015) Rapid and efficient estimation of pea resistance to the soil-borne pathogen Fusarium oxysporum by infrared imaging. Sensors 15:3988–4000

    Article  PubMed  Google Scholar 

  • Roth L, Streit B (2018) Predicting cover crop biomass by lightweight UAS-based RGB and NIR photography: an applied photogrammetric approach. Precis Agric 19:93–114

    Article  Google Scholar 

  • Rubiales D (2018) Can we breed for durable resistance to broomrapes? Phytopathologia Mediterranea 57:170–185

    Google Scholar 

  • Rubiales D, Fondevilla S, Chen W, Gentzbittel L, Higgins TJ, Castillejo MA, Singh KB, Rispail N (2015) Achievements and challenges in legume breeding for pest and disease resistance. Crit Rev Plant Sci 34:195–236

    Article  CAS  Google Scholar 

  • Sadras VO, Lake L, Leonforte A, McMurray LS, Paull JG (2013) Screening field pea for adaptation to water and heat stress: Associations between yield, crop growth rate and seed abortion. Field Crops Res 150:63–73

    Article  Google Scholar 

  • Scegura A (2017) Marker Assisted Backcross Selection for Virus Resistance in Pea (Pisum Sativum L.), Doctoral dissertation, North Dakota State University

  • Schmidt SM, Belisle M, Frommer WB (2020) The evolving landscape around genome editing in agriculture: many countries have exempted or move to exempt forms of genome editing from GMO regulation of crop plants. EMBO Rep 21:e50680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder HE, Gollasch S, Moore A, Tabe LM, Craig S, Hardie DC, Chrispeels MJ, Spencer D, Higgins TJ (1995) Bean [alpha]-amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas (Pisum sativum L.). Plant Physiol 107:1233–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shunmugam AS, Liu X, Stonehouse R, Tar’An B, Bett KE, Sharpe AG, Warkentin TD (2015) Mapping seed phytic acid concentration and iron bioavailability in a pea recombinant inbred line population. Crop Sci 55:828–836

    Article  CAS  Google Scholar 

  • Sindhu A, Ramsay L, Sanderson LA, Stonehouse R, Li R, Condie J, Shunmugam AS, Liu Y, Jha AB, Diapari M, Burstin J (2014) Gene-based SNP discovery and genetic mapping in pea. Theor Appl Genet 127:2225–2241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh B, Singh JP, Shevkani K, Singh N, Kaur A (2017) Bioactive constituents in pulses and their health benefits. J Food Sci Technol 54:858–870

    Article  CAS  PubMed  Google Scholar 

  • Smýkal P, Šafářová D, Navrátil M, Dostalová R (2010) Marker assisted pea breeding: eIF4E allele specific markers to pea seed-borne mosaic virus (PSbMV) resistance. Mol Breeding 26:425–438

    Article  Google Scholar 

  • Smýkal P, Trněný O, Brus J, Hanáček P, Rathore A, Roma RD, Pechanec V, Duchoslav M, Bhattacharyya D, Bariotakis M, Pirintsos S (2018) Genetic structure of wild pea (Pisum sativum subsp. elatius) populations in the northern part of the Fertile Crescent reflects moderate cross-pollination and strong effect of geographic but not environmental distance. PLoS ONE 13:e0194056

    Article  PubMed  PubMed Central  Google Scholar 

  • Sudheesh S, Lombardi M, Leonforte A, Cogan NO, Materne M, Forster JW, Kaur S (2014) Consensus genetic map construction for field pea (Pisum sativum L.), trait dissection of biotic and abiotic stress tolerance and development of a diagnostic marker for the er1 powdery mildew resistance gene. Plant Mol Biol Rep 33:1391–1403

    Article  Google Scholar 

  • Sudheesh S, Sawbridge TI, Cogan NO, Kennedy P, Forster JW, Kaur S (2015) De novo assembly and characterization of the field pea transcriptome using RNA-Seq. BMC Genomics 16:611

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun X, Yang T, Hao J, Zhang X, Ford R, Jiang J, Wang F, Guan J, Zong X (2014) SSR genetic linkage map construction of pea (Pisum sativum L.) based on Chinese native varieties. Crop J 2:170–174

    Article  Google Scholar 

  • Swisher Grimm KD, Porter LD (2020) Development and Validation of KASP Markers for the Identification of Pea seedborne mosaic virus Pathotype P1 Resistance in Pisum sativum. Plant Dis 104:1824–1830

    Article  PubMed  Google Scholar 

  • Tar’an B, Warkentin T, Somers DJ, Miranda D, Vandenberg A, Blade S, Woods S, Bing D, Xue A, DeKoeyer D, Penner G (2003) Quantitative trait loci for lodging resistance, plant height and partial resistance to mycosphaerella blight in field pea (Pisum sativum L.). Theor Appl Genet 107:1482–1491

    Article  CAS  PubMed  Google Scholar 

  • Tar’an B, Warkentin T, Somers DJ, Miranda D, Vandenberg A, Blade S, Bing D (2004) Identification of quantitative trait loci for grain yield, seed protein concentration and maturity in field pea (Pisum sativum L.). Euphytica 136:297–306

    Article  CAS  Google Scholar 

  • Tardieu F, Cabrera-Bosquet L, Pridmore T, Bennett M (2017) Plant phenomics, from sensors to knowledge. Curr Biol 27:R770-783

    Article  CAS  PubMed  Google Scholar 

  • Tayeh N, Bahrman N, Devaux R, Bluteau A, Prosperi JM, Delbreil B, Lejeune-Hénaut I (2013) A high-density genetic map of the Medicago truncatula major freezing tolerance QTL on chromosome 6 reveals colinearity with a QTL related to freezing damage on Pisum sativum linkage group VI. Mol Breeding 32:279–289

    Article  CAS  Google Scholar 

  • Tayeh N, Aluome C, Falque M, Jacquin F, Klein A, Chauveau A, Bérard A, Houtin H, Rond C, Kreplak J, Boucherot K (2015a) Development of two major resources for pea genomics: the GenoPea 13.2K SNP Array and a high density, high resolution consensus genetic map. Plant J 84:1257–1273

    Article  CAS  PubMed  Google Scholar 

  • Tayeh N, Klein A, Le Paslier MC, Jacquin F, Houtin H, Rond C, Chabert-Martinello M, Magnin-Robert JB, Marget P, Aubert G, Burstin J (2015b) Genomic prediction in pea: effect of marker density and training population size and composition on prediction accuracy. Front Plant Sci 6:941

    Article  PubMed  PubMed Central  Google Scholar 

  • Teressa Negawo A, Baranek L, Jacobsen HJ, Hassan F (2016) Molecular and functional characterization of cry1Ac transgenic pea lines. GM Crops Food 7:159–174

    Article  PubMed  PubMed Central  Google Scholar 

  • Timmerman-Vaughan GM, McCallum JA, Frew TJ, Weeden NF, Russell AC (1996) Linkage mapping of quantitative trait loci controlling seed weight in pea (Pisum sativum L.). Theor Appl Genet 93:431–439

    Article  CAS  PubMed  Google Scholar 

  • Timmerman-Vaughan GM, Frew TJ, Russell AC, Khan T, Butler R, Gilpin M, Murray S, Falloon K (2002) QTL mapping of partial resistance to field epidemics of ascochyta blight of pea. Crop Sci 42:2100–2111

    Article  CAS  Google Scholar 

  • Timmerman-Vaughan GM, Frew TJ, Butler R, Murray S, Gilpin M, Falloon K, Johnston P, Lakeman MB, Russell A, Khan T (2004) Validation of quantitative trait loci for Ascochyta blight resistance in pea (Pisum sativum L.), using populations from two crosses. Theor Appl Genet 109:1620–1631

    Article  CAS  PubMed  Google Scholar 

  • Timmerman-Vaughan GM, Mills A, Whitfield C, Frew T, Butler R, Murray S, Lakeman M, McCallum J, Russell A, Wilson D (2005) Linkage mapping of QTL for seed yield, yield components, and developmental traits in pea. Crop Sci 45:1336–1344

    Article  CAS  Google Scholar 

  • Timmerman-Vaughan GM, Moya L, Frew TJ, Murray SR, Crowhurst R (2016) Ascochyta blight disease of pea (Pisum sativum L.): defence-related candidate genes associated with QTL regions and identification of epistatic QTL. Theor Appl Genet 129:879–896

    Article  CAS  PubMed  Google Scholar 

  • Ubayasena L, Bett K, Tar’an B, Vijayan P, Warkentin T (2010) Genetic control and QTL analysis of cotyledon bleaching resistance in green field pea (Pisum sativum L.). Genome 53:346–359

    Article  CAS  PubMed  Google Scholar 

  • Ubayasena L, Bett K, Taran B, Warkentin T (2011) Genetic control and identification of QTLs associated with visual quality traits of field pea (Pisum sativum L.). Genome 54:261–272

    Article  PubMed  Google Scholar 

  • Valderrama MR, Román B, Satovic Z, Rubiales D, Cubero JI, Torres AM (2004) Locating quantitative trait loci associated with Orobanche crenata resistance in pea. Weed Res 44:323–328

    Article  CAS  Google Scholar 

  • Vijayalakshmi S, Yadav K, Kushwaha C, Sarode SB, Srivastava CP, Chand R, Singh BD (2005) Identification of RAPD markers linked to the rust (Uromyces fabae) resistance gene in pea (Pisum sativum). Euphytica 144:265–274

    Article  CAS  Google Scholar 

  • Wang L, Wang L, Tan Q, Fan Q, Zhu H, Hong Z, Zhang Z, Duanmu D (2016) Efficient inactivation of symbiotic nitrogen fixation related genes in lotus japonicus using CRISPR-Cas9. Front Plant Sci 7:1333

    PubMed  PubMed Central  Google Scholar 

  • Warkentin TD, Smýkal P, Coyne CJ, Weeden N, Domoney C, Bing DJ, Leonforte A, Xuxiao Z, Dixit GP, Boros L, McPhee KE (2015) Pea. In: De Ron A (ed) Grain Legumes. Handbook of Plant Breeding. Springer, New York, pp 37–83

    Google Scholar 

  • Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey MD, Hatta MA, Hinchliffe A, Steed A, Reynolds D, Adamski NM (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4:23

    Article  PubMed  Google Scholar 

  • Weeden NF (2018) Domestication of Pea (Pisum sativum L.): The case of the Abyssinian Pea. Front Plant Sci 9:515

    Article  PubMed  PubMed Central  Google Scholar 

  • Weeden NF, McGee R, Grau CR, Muehlbauer FJ (2000) A gene influencing tolerance to common root rot is located on linkage group IV. Pisum Genet 32:53–55

    Google Scholar 

  • Weller JL, Ortega R (2015) Genetic control of flowering time in legumes. Front Plant Sci 6:207

    Article  PubMed  PubMed Central  Google Scholar 

  • Winter P, Rubiales D, Fondevilla S (2016) Use of MACE technology to identify positional and expressional candidate genes for resistance to Didymella pinodes in pea. Second International Legume Society Conference

  • Xu J, Hua K, Lang Z (2019) Genome editing for horticultural crop improvement. Hortic Res 6:113

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Liu X, Fu J, Wang H, Wang J, Huang C, Prasanna BM, Olsen MS, Wang G, Zhang A (2020) Enhancing genetic gain through genomic selection: from livestock to plants. Plant Commun 1:100005

    Article  PubMed  Google Scholar 

  • Yang T, Fang L, Zhang X, Hu J, Bao S, Hao J, Li L, He Y, Jiang J, Wang F, Tian S (2015) High-throughput development of SSR markers from pea (Pisum sativum L.) based on next generation sequencing of a purified Chinese commercial variety. PLoS ONE 10:e0139775

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu K (2011) Bacterial artificial chromosome libraries of pulse crops: characteristics and applications. J Biomed Biotechnol 2012:2012

    Google Scholar 

  • Zaman MSU, Malik AI, Erskine W, Kaur P (2019) Changes in gene expression during germination reveal pea genotypes with either “quiescence” or “escape” mechanisms of waterlogging tolerance. Plant Cell Environ 42:245–258

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Tar’an B, Warkentin’ T, Tullu A, Bett KE, Vandenberg B, Somers DJ (2006) Selection for lodging resistance in early generations of field pea by molecular markers. Crop Sci 46:321–329

    Article  Google Scholar 

  • Zhao J, Bodner G, Rewald B, Leitner D, Nagel KA, Nakhforoosh A (2017) Root architecture simulation improves the inference from seedling root phenotyping towards mature root systems. J Exp Bot 68:965–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Xu F, Li Q, Wang G, Liu N, Gong Y, Li L, Chen ZH, Xu S (2018) QTL mapping combined with bulked segregant analysis identify snp markers linked to leaf shape traits in pisum sativum using slaf sequencing. Front Genet 9:615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong Z, Sretenovic S, Ren Q, Yang L, Bao Y, Qi C, Yuan M, He Y, Liu S, Liu X, Wang J, Huang L, Wang Y, Baby D, Wang D, Zhang T, Qi Y, Zhang Y (2019) Improving plant genome editing with high-fidelity xcas9 and non-canonical pam-targeting Cas9-NG. Mol Plant 12:1027–1036

    Article  CAS  PubMed  Google Scholar 

  • Zhuang LL, Ambrose M, Rameau C, Weng L, Yang J, Hu XH, Luo D, Li X (2012) LATHYROIDES, encoding a WUSCHEL-related Homeobox1 transcription factor, controls organ lateral growth, and regulates tendril and dorsal petal identities in garden pea (Pisum sativum L.). Mol Plant 5:1333–1345

    Article  CAS  PubMed  Google Scholar 

  • Zhukov VA, Zhernakov AI, Kulaeva OA, Ershov NI, Borisov AY, Tikhonovich IA (2015) De novo assembly of the pea (Pisum sativum L.) nodule transcriptome. Int J Genomics 2015:695947

    Article  PubMed  PubMed Central  Google Scholar 

  • Zohary D (1999) Monophyletic vs. polyphyletic origin of the crops on which agriculture was founded in the Near East. Genet Resour Crop Ev 46:133–142

    Article  Google Scholar 

  • Zohary D, Hopf M, Weiss E (2012) Domestication of plants in the old world: the origin and spread of domesticated plants in southwest Asia, Europe, and the Mediterranean basin, 4th edn. Oxford University Press, Oxford

    Book  Google Scholar 

Download references

Acknowledgements

This work is supported by the China National Program for Support of Top-Notch Young Professionals (to P.X.) and the start-up funds for high-end talents from China Jiliang University (grant No. 19072501).

Author information

Authors and Affiliations

Authors

Contributions

AKP and PX conceptualized the idea, planned MS content, coordinated with co-authors, and finalized the MS. PX and DR contributed to planning the MS content and contributed special sections. YW, PF, TS, and NL contributed in different sections of the MS. All the authors read the submitted version of MS.

Corresponding author

Correspondence to Pei Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Rajeev K. Varshney.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, A.K., Rubiales, D., Wang, Y. et al. Omics resources and omics-enabled approaches for achieving high productivity and improved quality in pea (Pisum sativum L.). Theor Appl Genet 134, 755–776 (2021). https://doi.org/10.1007/s00122-020-03751-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-020-03751-5