Skip to main content
Log in

Mapping adult plant stem rust resistance in barley accessions Hietpas-5 and GAW-79

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

A Correction to this article was published on 01 September 2018

This article has been updated

Abstract

Key message Major stem rust resistance QTLs proposed to be Rpg2 from Hietpas-5 and Rpg3 from GAW-79 were identified in chromosomes 2H and 5H, respectively, and will enhance the diversity of stem rust resistance in barley improvement programs.

Abstract

Stem rust is a devastating disease of cereal crops worldwide. In barley (Hordeum vulgare ssp. vulgare), the disease is caused by two pathogens: Puccinia graminis f. sp. secalis (Pgs) and Puccinia graminis f. sp. tritici (Pgt). In North America, the stem rust resistance gene Rpg1 has protected barley from serious losses for more than 60 years; however, widely virulent Pgt races from Africa in the Ug99 group threaten the crop. The accessions Hietpas-5 (CIho 7124) and GAW-79 (PI 382313) both possess moderate-to-high levels of adult plant resistance to stem rust and are the sources of the resistance genes Rpg2 and Rpg3, respectively. To identify quantitative trait loci (QTL) for stem rust resistance in Hietpas-5 and GAW-79, two biparental populations were developed with Hiproly (PI 60693), a stem rust-susceptible accession. Both populations were phenotyped to the North American Pgt races of MCCFC, QCCJB, and HKHJC in St. Paul, Minnesota, and to African Pgt races (predominately TTKSK in the Ug99 group) in Njoro, Kenya. In the Hietpas-5/Hiproly population, a major effect QTL was identified in chromosome 2H, which is proposed as the location for Rpg2. In the GAW-79/Hiproly population, a major effect QTL was identified in chromosome 5H and is the proposed location for Rpg3. These QTLs will enhance the diversity of stem rust resistance in barley improvement programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 01 September 2018

    Unfortunately, one co-author name was incorrectly published in the original publication. The complete correct name should read as follows.

References

  • Arora D, Gross T, Brueggeman R (2013) Allele characterization of genes required for rpg4-mediated wheat stem rust resistance identifies Rpg5 as the R gene. Phytopathology 103:1153–1161

    Article  CAS  PubMed  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Soft. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  • Berkelaar M, Buttrey SE (2015) Package ‘lpSolve to solve linear/integer programs, 5.6.13 edn. https://cran.r-project.org. Accessed 9 Aug 2018

  • Best D, Roberts D (1975) Algorithm AS 89: the upper tail probabilities of Spearman’s rho. J R Stat Soc Ser C Appl Stat 24:377–379

    Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Breen S, Williams SJ, Outram M, Kobe B, Solomon PS (2017) Emerging insights into the functions of pathogenesis-related protein 1. Trends Plant Sci 10:871–879

    Article  CAS  Google Scholar 

  • Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F, Chen J, Druka A, Steffenson B, Kleinhofs A (2002) The barley stem rust-resistance gene Rpg1 is a novel disease resistance gene with homology to receptor kinases. Proc Natl Acad Sci USA 99:9328–9333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brueggeman R, Druka A, Nirmala J, Cavileer T, Drader T, Rostoks N, Mirlohi A, Bennypaul H, Gill U, Kudrna D, Whitelaw C, Kilian A, Han F, Sun Y, Gill K, Steffenson B, Kleinhofs A (2008) The stem rust resistance gene Rpg5 encodes a protein with nucleotide-binding-site, leucine-rich, and protein kinase domains. Proc Natl Acad Sci USA 105:14970–14975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brueggeman R, Steffenson BJ, Kleinhofs A (2009) The rpg4/Rpg5 stem rust resistance locus in barley: resistance genes and cytoskeleton dynamics. Cell Cycle 8:977–981

    Article  CAS  PubMed  Google Scholar 

  • Case AJ (2017) Genetics sources and mapping of stem rust resistance in barley. Ph.D. Dissertation, Department of Plant Pathology. University of Minnesota

  • Case AJ, Naruoka Y, Chen X, Garland-Campbell KA, Zemetra RS, Carter AH (2014a) Mapping stripe rust resistance in a Brundage x Coda winter wheat recombinant inbred line population. PLoS ONE 9:e91758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Case AJ, Skinner DZ, Garland-Campbell KA, Carter AH (2014b) Freezing tolerance-associated quantitative trait loci in the Brundage x Coda wheat recombinant inbred line population. Crop Sci 54:982–992

    Article  Google Scholar 

  • Case AJ, Bhavani S, Macharia G, Steffenson BJ (2018) Genome-wide association study of stem rust resistance in a world collection of cultivated Barley. Theor Appl Genet 131:107–126. https://doi.org/10.1007/s00122-017-2989-y

    Article  CAS  PubMed  Google Scholar 

  • CDL (2016) Cereal rust bulletin. Online Publication. United States Department of Agriculture-Agricultural Research Service, Cereal Disease Lab (CDL), St. Paul

  • Chambers JM (1992) Linear models: Statistical Models in S. In: Chambers JM, Hastie TJ (eds) Compstat. Wadsworth & Brooks & Cole, New York

    Google Scholar 

  • Dahleen LS, Agrama HA, Horsley RD, Steffenson BJ, Schwarz PB, Mesfin A, Franckowiak JD (2003) Identification of QTLs associated with Fusarium head blight resistance in Zhedar 2 barley. Theor Appl Genet 108:95–104

    Article  CAS  PubMed  Google Scholar 

  • De Mendiburu F (2016) Package ‘agricolae’, Statistical procedures for agricultural research, 1.2-4 edn. https://cran.r-project.org. Accessed 9 Aug 2018

  • Deng W, Nickle DC, Learn GH, Maust B, Mullins JI (2007) ViroBLAST: a stand-alone BLAST web server for flexible queries of multiple databases and user’s datasets. Bioinformatics 23:2334–2336

    Article  CAS  PubMed  Google Scholar 

  • Dill-Macky R, Rees RG (1992) Sources of resistance to stem rust in barley. Plant Dis 76:212

    Article  Google Scholar 

  • Dill-Macky R, Rees R, Platz G (1990) Stem rust epidemics and their effects on grain yield and quality in Australian barley cultivars. Crop Pasture Sci 41:1057–1063

    Article  Google Scholar 

  • Endelman JB, Plomion C (2014) LPmerge: an R package for merging genetic maps by linear programming. Bioinformatics 30:1623–1624

    Article  CAS  PubMed  Google Scholar 

  • Fetch T, Johnston PA, Pickering R (2009) Chromosomal location and inheritance of stem rust resistance transferred from Hordeum bulbosum into cultivated barley (H. vulgare). Phytopathology 99:339–343

    Article  CAS  PubMed  Google Scholar 

  • Fox SL, Harder DE (1995) Resistance to stem rust in barley and inheritance of resistance to race QCC. Can J Plant Sci 75:781–788

    Article  Google Scholar 

  • Franckowiak J (1991) BGS 512: Resistance to Puccinia graminis Pers. f. sp. tritici Eriks. & E. Henn. (black stem rust), Rpg2b. Barley Genet Newsl 20:116

    Google Scholar 

  • Franckowiak JD, Haus TE (1997a) BGS 66: six-rowed spike 1 (two-rowed spike). Barley Genet Newsl 26:103

    Google Scholar 

  • Franckowiak JD, Haus TE (1997b) BGS 67: six-rowed spike 1 (deficiens spike). Barley Genet Newsl 26:104

    Google Scholar 

  • Franckowiak J, Steffenson B (1997) BGS 512: Resistance to Puccinia graminis Pers. f. sp. tritici Eriks. & E. Henn. (black stem rust), Rpg2b. Barley Genet Newsl 26:439

    Google Scholar 

  • Franckowiak JD, Konishi T, Haus TE (1997a) Naked caryopsis. Barley Genet Newsl 26:51

    Google Scholar 

  • Franckowiak JD, Lundqvist U, Haus TE (1997b) BGS 6: six-rowed spike 1. Barley Genet Newsl 26:1

    Google Scholar 

  • Harder DE, Dunsmore KM (1991) Incidence and virulence of Puccinia graminis f. sp. tritici on wheat and barley in Canada in 1990. Can J Plant Pathol 13:361–364

    Article  Google Scholar 

  • Jedel P (1991) A gene for resistance to Puccinia graminis f. sp. tritici in PI 382313. Barley Genet Newsl 20:43–44

    Google Scholar 

  • Jedel PE, Metcalfe DR, Martens JW (1989) Assessment of barley accessions PI-382313, PI-382474, PI-382915, and PI-382976 for stem rust resistance. Crop Sci 29:1473–1477

    Article  Google Scholar 

  • Jin Y, Steffenson BJ, Fetch TG (1994a) Sources of resistance to pathotype QCC of Puccinia graminis f. sp. tritici in barley. Crop Sci 34:285–288

    Article  CAS  Google Scholar 

  • Jin Y, Steffenson BJ, Miller JD (1994b) Inheritance of resistance to pathotypes QCC and MCC of Puccinia graminis f. sp. tritici in barley line Q21861 and temperature effects on the expression of resistance. Phytopathology 84:452–455

    Article  Google Scholar 

  • Jin Y, Szabo L, Pretorius Z, Singh R, Ward R, Fetch T Jr (2008) Detection of virulence to resistance gene Sr24 within race TTKS of Puccinia graminis f. sp. tritici. Plant Dis 92:923–926

    Article  PubMed  Google Scholar 

  • Kleinhofs A, Kilian A, Maroof MS, Biyashev RM, Hayes P, Chen F, Lapitan N, Fenwick A, Blake T, Kanazin V (1993) A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705–712

    Article  CAS  PubMed  Google Scholar 

  • Komatsuda T, Li WB, Takaiwa F, Oka S (1999) High resolution map around the vrs1 locus controlling two and six-rowed spike in barley, Hordeum vulgare. Genome 42:248–253

    Article  CAS  Google Scholar 

  • Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori H, Perovic D, Stein N, Graner A, Wicker T, Tagiri A, Lundqvist U, Fujimura T, Matsuoka M, Matsumoto T, Yano M (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci USA 104:1424–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Mamo B (2013) Genetic characterization of multiple disease resistance and agronomical and nutritional traits in Hordeum. Ph.D. Dissertation, Department of Plant Pathology, University of Minnesota, UMI Dissertations Publishing

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mamo BE, Smith KP, Brueggeman RS, Steffenson BJ (2015) Genetic characterization of resistance to wheat stem rust race TTKSK in landrace and wild barley accessions identifies the rpg4/Rpg5 locus. Phytopathology 105:99–109

    Article  CAS  PubMed  Google Scholar 

  • Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang X-Q, Zhang Q, Barrero RA, Li L, Taudien S, Groth M, Felder M, Hastie A, Šimková H, Staňková H, Vrána J, Chan S, Muñoz-Amatriaín M, Ounit R, Wanamaker S, Bolser D, Colmsee C, Schmutzer T, Aliyeva-Schnorr L, Grasso S, Tanskanen J, Chailyan A, Sampath D, Heavens D, Clissold L, Cao S, Chapman B, Dai F, Han Y, Li H, Li X, Lin C, McCooke JK, Tan C, Wang P, Wang S, Yin S, Zhou G, Poland JA, Bellgard MI, Borisjuk L, Houben A, Doležel J, Ayling S, Lonardi S, Kersey P, Langridge P, Muehlbauer GJ, Clark MD, Caccamo M, Schulman AH, Mayer KFX, Platzer M, Close TJ, Scholz U, Hansson M, Zhang G, Braumann I, Spannagl M, Li C, Waugh R, Stein N (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–433

    Article  CAS  PubMed  Google Scholar 

  • McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, Flicek P, Cunningham F (2016) The ensembl variant effect predictor. Genome Biol 17:122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller JD, Lambert J (1955) Variability and inheritance of reaction of barley to race 15B of stem rust. Agron J 47:373–377

    Article  Google Scholar 

  • Money D, Gardner K, Migicovsky Z, Schwaninger H, Zhong G-Y, Myles S (2015) LinkImpute: fast and accurate genotype imputation for nonmodel organisms. G3 Genes Genomes Genet 5:2383–2390

    Google Scholar 

  • Moscou MJ, Lauter N, Steffenson B, Wise RP (2011) Quantitative and qualitative stem rust resistance factors in barley are associated with transcriptional suppression of defense regulons. PLoS Genet 7:e1002208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muñoz-Amatriaín M, Cuesta-Marcos A, Endelman JB, Comadran J, Bonman JM, Bockelman HE, Chao S, Russell J, Waugh R, Hayes PM, Muehlbauer GJ (2014) The USDA barley core collection: genetic diversity, population structure, and potential for genome-wide association studies. PLoS ONE 9:e94688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mwando EK, Tabu IM, Otaye OD, Njau NP (2012) Effect of Ug99 race of stem rust (Puccinia graminis f. sp. tritici) on growth and yield of barley (Hordeum vulgare L.) in Kenya. J Agric Sci 4:161–168

    Google Scholar 

  • Newcomb M, Olivera PD, Rouse MN, Szabo LJ, Johnson J, Gale S, Luster DG, Wanyera R, Macharia G, Bhavani S, Hodson D, Patpour M, Hovmoller MS, Fetch TG Jr, Jin Y (2016) Kenyan isolates of Puccinia graminis f. sp. tritici from 2008 to 2014: virulence to SrTmp in the Ug99 race group and implications for breeding programs. Phytopathology 106:729–736

    Article  CAS  PubMed  Google Scholar 

  • Nirmala J, Rouse M, Chen X, Jin Y (2015) New virulent races of barley leaf and stem rust pathogens in the United States. American Malting Barley Association, Barley Improvement Conference, San Diego, CA, Oral Presentation

  • Oehler E (1950) Die Zu¨chtung der Getreidearten und die Produktion und Anerkennung von Getreidesaatgut in der Schweiz. Druckwerkstatten Koehler & Hennemann, Wiesbaden

    Google Scholar 

  • Patterson F (1955) Adult plant and seedling resistance of barley varieties and hybrids to three races of Puccinia graminis f. sp tritici. Ph.D. Dissertation, Department of Agronomy, University of Wisconsin, Madison

  • Patterson F, Shands R, Dickson J (1957) Temperature and seasonal effects on seedling reactions of barley varieties to three races of Puccinia graminis f. sp. tritici. Phytopathology 47:395–402

    Google Scholar 

  • Peterson RF, Campbell A, Hannah A (1948) A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can J Res 26:496–500

    Article  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:e32253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pretorius Z, Singh R, Wagoire W, Payne T (2000) Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Dis 84:203

    Article  PubMed  Google Scholar 

  • Roelfs AP (1978) Estimated losses caused by rust in small grain cereals in the United States, 1918–1976. Online Publication, United States Department of Agriculture-Agricultural Research Service, Cereal Rust Laboratory

  • Roelfs AP (1982) Effects of barberry eradication on stem rust in the United States. Plant Dis 66:177–181

    Article  Google Scholar 

  • Roelfs A (1988) Resistance to leaf and stem rust of wheat. In: Simmonds NW, Rajaram S (eds) Breeding strategies for resistance to the rusts of wheat. CIMMYT, Mexico

    Google Scholar 

  • Roelfs A, Casper D, Long D, Roberts J (1991) Races of Puccinia graminis in the United States in 1989. Plant Dis 75:1127–1130

    Article  Google Scholar 

  • Roelfs A, Long DL, Roberts JJ (1993) Races of Puccinia graminis identified in the United States during 1991. Plant Dis 77:129–132

    Article  Google Scholar 

  • Sallam AH, Tyagi P, Brown-Guedira G, Muehlbauer GJ, Hulse A, Steffenson BJ (2017) Genome-wide association mapping of stem rust resistance in Hordeum vulgare subsp. spontaneum. G3 Genes Genomes Genet 10:3491–3507

    Google Scholar 

  • Schilperoord P (2013) Kulturpflanzen in der Schweiz—Gerste. Verein fur alpine Kulturpflanzen Association for Alpine Crops, Alvaneu

    Google Scholar 

  • Shands R (1939) ‘Chevron’ a barley variety resistant to stem rust and other diseases. Phytopathology 29:209–211

    Google Scholar 

  • Shands R (1964) inheritance and linkage of stem rust and loose smut resistance and starch type in barley. Phytopathology 54:308–316

    Google Scholar 

  • Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Njau P, Wanyera R, Herrera-Foessel SA, Ward RW (2008) Will stem rust destroy the world’s wheat crop? Adv Agron 98:271–309

    Article  CAS  Google Scholar 

  • Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S, Njau P, Herrera-Foessel S, Singh PK, Singh S, Govindan V (2011) The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol 49:465–481

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Herrera-Foessel S, Huerta-Espino J, Singh S, Bhavani S, Lan CX, Basnet BR (2014) Progress towards genetics and breeding for minor gene based resistance to Ug99 and other rusts in CIMMYT high yielding spring wheat. J Integr Agric 13:255–261

    Article  CAS  Google Scholar 

  • Singh RP, Hodson DP, Jin Y, Lagudah ES, Ayliffe MA, Bhavani S, Rouse MN, Pretorius ZA, Szabo LJ, Huerta-Espino J, Basnet BR, Lan C, Hovmoller MS (2015) Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control. Phytopathology 105:872–884

    Article  PubMed  Google Scholar 

  • Smith K, Budde A, Dill-Macky R, Rasmusson D, Schiefelbein E, Steffenson B, Wiersma J, Wiersma J, Zhang B (2013) Registration of ‘Quest’spring malting barley with improved resistance to Fusarium head blight. J Plant Regist 7:125–129

    Article  Google Scholar 

  • Stakman EC, Steward DM, Loegering WQ (1962) Identification of physiologic races of Puccinia graminis var. tritici. U.S. Department of Agriculture ARS E-617

  • Steffenson BJ (1992) Analysis of durable resistance to stem rust in barley. Euphytica 63:153–167

    Article  Google Scholar 

  • Steffenson BJ, Jin Y (2006) Resistance to race TTKS of Puccinia graminis f. sp tritici in barley. Phytopathology 96:S110–S110

    Google Scholar 

  • Steffenson BJ, Wilcoxson RD, Roelfs AP (1984) Inheritance of resistance to Puccinia graminis f.sp. secalis in barley. Plant Dis 68:762–763

    Article  Google Scholar 

  • Steffenson BJ, Wilcoxson RD, Roelfs AP (1985) Resistance of barley to Puccinia graminis f. sp. tritici and Puccinia gaminis f. sp. secalis. Phytopathology 75:1108–1111

    Article  Google Scholar 

  • Steffenson B, Jin Y, Rossnagel B, Rasmussen J, Kao K (1995) Genetics of multiple disease resistance in a doubled-haploid population of barley. Plant Breed 114:50–54

    Article  Google Scholar 

  • Steffenson BJ, Olivera P, Roy JK, Jin Y, Smith KP, Muehlbauer GJ (2007) A walk on the wild side: mining wild wheat and barley collections for rust resistance genes. Aust J Agric Res 58:532–544

    Article  Google Scholar 

  • Steffenson B, Jin Y, Brueggeman R, Kleinhofs A, Sun Y (2009) Resistance to stem rustrace TTKSK maps to the rpg4/Rpg5 complex of chromosome 5H of barley. Phytopathology 99:1135–1141

    Article  CAS  PubMed  Google Scholar 

  • Steffenson BJ, Solanki S, Brueggeman RS (2016) Landraces from mountainous regions of Switzerland are sources of important genes for stem rust resistance in barley. Alp Bot 126:23–33

    Article  Google Scholar 

  • Steffenson BJ, Case AJ, Pretorius Z, Coetzee V, Kloopers FJ, Zhou H, Chai Y (2017) Vulnerability of barley to African pathotypes of Puccinia graminis f. sp. tritici and sources of resistance. Phytopathology PHYTO-11-16-0400-R

  • Sun Y, Steffenson BJ (2005) Reaction of barley seedlings with different stem rust resistance genes to Puccinia graminis f. sp tritici and Puccinia graminis f. sp secalis. Can J Plant Pathol 27:80–89

    Article  Google Scholar 

  • Sun YL, Steffenson BJ, Jin Y (1996) Genetics of resistance to Puccinia graminis f sp secalis in barley line Q21861. Phytopathology 86:1299–1302

    Article  Google Scholar 

  • Tang D, Wang G, Zhou JM (2017) Receptor kinases in plant-pathogen interactions: more than pattern recognition. Plant Cell 29:618–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor J, Butler B (2016) ASMap: linkage map construction using the MSTmap algorithm, 0.4-7 edn. Comprehensive R Archive Network. https://cran.r-project.org. Accessed 9 Aug 2018

  • Team RDC (2016) R: A language and environment for statistical computing. Comprehensive R Archive Network. https://cran.r-project.org. Accessed 9 Aug 2018

  • Turuspekov Y, Ormanbekova D, Rsaliev A, Abugalieva S (2016) Genome-wide association study on stem rust resistance in Kazakh spring barley lines. BMC Plant Biol 16(1):14–21

    Article  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng Z-B (2012) Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh

  • Wang X, Richards J, Gross T, Druka A, Kleinhofs A, Steffenson B, Acevedo M, Brueggeman R (2013) The rpg4-mediated resistance to wheat stem rust (Puccinia graminis) in barley (Hordeum vulgare) requires Rpg5, a second NBS-LRR gene, and an actin depolymerization factor. Mol Plant Microbe Interact 26:407–418

    Article  CAS  PubMed  Google Scholar 

  • Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 7:206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Bhat PR, Close TJ, Lonardi S (2008) Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS Genet 4:e1000212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zadoks J, Chang T, Konzak C (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

  • Zeng ZB (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci U.S.A 90:10972–10976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Steffenson BJ, Muehlbauer G, Wanyera R, Njau P, Ndeda S (2014) Association mapping of stem rust race TTKSK resistance in US barley breeding germplasm. Theor Appl Genet 127:1293–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou G, Zhang Q, Zhang X, Tan C, Li C (2015) Construction of high-density genetic map in barley through restriction-site associated DNA sequencing. PLoS ONE 10(7):e0133161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded, in part, by the Triticeae Coordinated Agricultural Project (2011-68002-30029) from the United States Department of Agriculture National Institute of Food and Agriculture, the Lieberman-Okinow Endowment at the University of Minnesota, American Malting Barley Association, and United States Department of Agriculture-Agricultural Research Service Cooperative Agreement 58-5062-5-012 (Understanding Stem Rust Resistance in Barley and Germplasm). AJC acknowledges financial support from the following University of Minnesota fellowships: Norman E. Borlaug Graduate Fellowship for International Agriculture supported by the Vaale-Henry Endowment, the Minnesota Discovery, Research, and Innovation (MnDRIVE) Fellowship, and the Doctoral Dissertation Fellowship. We thank T. Szinyei and M. Martin, for excellent technical assistance, and Dr. Ahmad Sallam and Dr. María Muñoz-Amatriaín for assistance data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Steffenson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Frank Ordon.

The author name Frederik Kloppers was incorrect in original publication. It has been corrected.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Hietpas-5/Hiproly and PI 382313/Hiproly recombinant inbred line population subsets used for genotyping and phenotyping and those used for genotyping only. In the Hietpas-5/Hiproly and the PI 382313/Hiproly populations, 280 and 278 RILs were genotyped, respectively, but only 200 RILs of each population were used in phenotyping. (XLSX 47 kb)

Online Resource 2

Hietpas-5/Hiproly recombinant inbred line population raw genotyping-by-sequencing calls. Raw SNP data were generated as described in Materials and Methods section where marker_new, Chrom_new, and Pos_new are based on the updated genome assembly. Ref_seq is 30 bp before and 30 bp after the SNP in this reference genome version, whereas Marker_old, Chrom_old, and Pos_old were based on an older version of the reference genome where chromosomes were split into two parts. (CSV 14416 kb)

Online Resource 3

PI 382313/Hiproly recombinant inbred line population raw genotyping-by-sequencing calls. Raw SNP data were generated as described in Materials and Methods section where marker_new, Chrom_new, and Pos_new are based on the updated genome assembly. Ref_seq is 30 bp before and 30 bp after the SNP in this reference genome version, whereas Marker_old, Chrom_old, and Pos_old were based on an older version of the reference genome where chromosomes were split into two parts. (CSV 10693 kb)

Online Resource 4

Hietpas-5/Hiproly recombinant inbred line population imputed genotyping-by-sequencing calls to fill in missing genotype data. Raw genotype-by-sequencing calls were imputed using the LinkImpute method as described in Materials and Methods section (Money et al. 2015). (CSV 12503 kb)

Online Resource 5

PI 382313/Hiproly recombinant inbred line population imputed genotyping-by-sequencing calls to fill in missing genotype data. Raw genotype-by-sequencing calls were imputed using the LinkImpute method as described in Materials and Methods section (Money et al. 2015). (CSV 9266 kb)

Online Resource 6

Hietpas-5/Hiproly recombinant inbred line population final genotyping-by-sequencing calls after imputation and filtering. The final set of genotype-by-sequencing marker calls were first imputed and then filtered for quality control as described in Materials and Methods section. The total number of markers was 8586, including the two morphological markers. Alleles calls were converted to A, B, H, and N calls, where “A” alleles were Hietpas-5-like, “B” alleles Hiproly-like, “H” was heterozygous, and “N” was missing. (CSV 5244 kb)

Online Resource 7

PI 382313/Hiproly recombinant inbred line population final genotyping-by-sequencing calls after imputation and filtering. The final set of genotype-by-sequencing marker calls were first imputed and then filtered for quality control as described in Materials and Methods section. The total number of markers remaining was 6985, including two morphological markers. Alleles calls were converted to A, B, H, and N calls, where “A” alleles were PI 382313-like, “B” alleles Hiproly-like, “H” was heterozygous, and “N” was missing. (CSV 4239 kb)

Online Resource 8

Linkage maps of the Hietpas-5/Hiproly and PI 382313/Hiproly recombinant inbred line populations. Marker cM distance was calculated as described in Materials and Methods section. Maps were constructed with 1585 markers in the Hietpas-5/Hiproly population and 1364 in the PI 382313/Hiproly population. (CSV 165 kb)

Supplementary material (DOCX 1228 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Case, A.J., Bhavani, S., Macharia, G. et al. Mapping adult plant stem rust resistance in barley accessions Hietpas-5 and GAW-79. Theor Appl Genet 131, 2245–2266 (2018). https://doi.org/10.1007/s00122-018-3149-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-018-3149-8

Navigation