Skip to main content
Log in

Quantitative trait loci for resistance to stripe rust of wheat revealed using global field nurseries and opportunities for stacking resistance genes

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Quantitative trait loci controlling stripe rust resistance were identified in adapted Canadian spring wheat cultivars providing opportunity for breeders to stack loci using marker-assisted breeding.

Abstract

Stripe rust or yellow rust, caused by Puccinia striiformis Westend. f. sp. tritici Erikss., is a devastating disease of common wheat (Triticum aestivum L.) in many regions of the world. The objectives of this research were to identify and map quantitative trait loci (QTL) associated with stripe rust resistance in adapted Canadian spring wheat cultivars that are effective globally, and investigate opportunities for stacking resistance. Doubled haploid (DH) populations from the crosses Vesper/Lillian, Vesper/Stettler, Carberry/Vesper, Stettler/Red Fife and Carberry/AC Cadillac were phenotyped for stripe rust severity and infection response in field nurseries in Canada (Lethbridge and Swift Current), New Zealand (Lincoln), Mexico (Toluca) and Kenya (Njoro), and genotyped with SNP markers. Six QTL for stripe rust resistance in the population of Vesper/Lillian, five in Vesper/Stettler, seven in Stettler/Red Fife, four in Carberry/Vesper and nine in Carberry/AC Cadillac were identified. Lillian contributed stripe rust resistance QTL on chromosomes 4B, 5A, 6B and 7D, AC Cadillac on 2A, 2B, 3B and 5B, Carberry on 1A, 1B, 4A, 4B, 7A and 7D, Stettler on 1A, 2A, 3D, 4A, 5B and 6A, Red Fife on 2D, 3B and 4B, and Vesper on 1B, 2B and 7A. QTL on 1A, 1B, 2A, 2B, 3B, 4A, 4B, 5B, 7A and 7D were observed in multiple parents. The populations are compelling sources of recombination of many stripe rust resistance QTL for stacking disease resistance. Gene pyramiding should be possible with little chance of linkage drag of detrimental genes as the source parents were mostly adapted cultivars widely grown in Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bariana HS, Hayden MJ, Ahmed NU, Bell JA, Sharp PJ, McIntosh RA (2001) Mapping of durable adult plant and seedling resistances to stripe rust and stem rust diseases in wheat. Aust J Agric Res 52:1247–1255

    Article  CAS  Google Scholar 

  • Bariana HS, Parry N, Barclay IR, Loughman R, McLean RJ, Shankar M, Wilson RE, Willey NJ, Francki M (2006) Identification and characterization of stripe rust resistance gene Yr34 in common wheat. Theor Appl Genet 112:1143–1148

    Article  PubMed  CAS  Google Scholar 

  • Bariana HS, Bansal UK, Schmidt A, Lehmensiek A, Kaur J, Miah H, Howes N, McIntyre CL (2010) Molecular mapping of adult plant stripe rust resistance in wheat and identification of pyramided QTL genotypes. Euphytica 176:251–260

    Article  CAS  Google Scholar 

  • Brar GS, Kutcher HR (2016) Race characterization of Puccinia striiformis f. sp. tritici, the cause of wheat stripe rust, in Saskatchewan and Southern Alberta, Canada and virulence comparison with races from the USA. Plant Dis 100:1744–1753

    Article  Google Scholar 

  • Calvo-Salazar V, Singh RP, Huerta-Espino J, Cruz-Izquierdo S, Lobato-Ortiz R, Sandoval-Islas S, Vargas-Hernández M, German S, Silva P, Basnet BR, Lan CX, Herrera-Foessel SA (2015) Genetic analysis of resistance to leaf rust and yellow rust in spring wheat cultivar Kenya Kongoni. Plant Dis 99:1153–1160

    Article  CAS  Google Scholar 

  • Chen XM (2005) Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Can J Plant Pathol 27:314–337

    Article  Google Scholar 

  • Chen X, Penman L, Wan A, Cheng P (2010) Virulence races of Puccinia striiformis f. sp. tritici in 2006 and 2007 and development of wheat stripe rust and distributions, dynamics, and evolutionary relationships of races from 2000 to 2007 in the United States. Can J Plant Pathol 32:315–333

    Article  Google Scholar 

  • Christiansen MJ, Feenstra B, Skovgaard IM, Andersen SB (2006) Genetic analysis of resistance to yellow rust in hexaploid wheat using a mixture model for multiple crosses. Theor Appl Genet 112:581–591

    Article  PubMed  CAS  Google Scholar 

  • Dakouri A, McCallum BD, Walichnowski AZ, Cloutier S (2010) Fine-mapping of the leaf rust Lr34 locus in Triticum aestivum (L.) and characterization of large germplasm collections support the ABC transporter as essential for gene function. Theor Appl Genet 121:373–384

    Article  PubMed  CAS  Google Scholar 

  • DePauw RM, Thomas JB, Knox RE, Clarke JM, Fernandez MR, McCaig TN, McLeod JG (1998) AC Cadillac hard red spring wheat. Can J Plant Sci 78:459–462

    Article  Google Scholar 

  • DePauw RM, Townley-Smith TF, Humphreys G, Knox RE, Clarke FR, Clarke JM (2005) Lillian hard red spring wheat. Can J Plant Sci 85:397–401

    Article  Google Scholar 

  • DePauw RM, Knox RE, Clarke FR, Wang H, Fernandez MR, Clarke JM, McCaig TN (2007) Shifting undesirable correlations. Euphytica 157:409–415

    Article  Google Scholar 

  • DePauw RM, Knox RE, Clarke FR, Clarke JM, McCaig TN (2009) Stettler hard red spring wheat. Can J Plant Sci 89:945–951

    Article  Google Scholar 

  • DePauw RM, Knox RE, McCaig TN, Clarke FR, Clarke JM (2011) Carberry hard red spring wheat. Can J Plant Sci 91:529–534

    Article  Google Scholar 

  • Distelfeld A, Uauy C, Fahima T, Dubcovsky J (2006) Physical map of the wheat high-grain protein content gene Gpc-B1 and development of a high-throughput molecular marker. New Phytol 169:753–763

    Article  PubMed  CAS  Google Scholar 

  • Ellis JG, Lagudah ES, Spielmeyer W, Dodds PN (2014) The past, present and future of breeding rust resistant wheat. Front Plant Sci 5:641

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang T, Campbell KG, Liu ZY, Chen X, Wan A, Li S, Liu ZJ, Cao S, Chen Y, Bowden RL, Carver BF, Yan L (2011) Stripe rust resistance in the wheat cultivar Jagger is due to Yr17 and a novel resistance gene. Crop Sci 51:2455–2465

    Article  CAS  Google Scholar 

  • Fowler DB, N’Diaye A, Laudencia-Chingcuanco D, Pozniak CJ (2016) Quantitative trait loci associated with phenological development, low-temperature tolerance, grain quality, and agronomic characters in wheat (Triticum aestivum L.). PLoS One 11(3):e0152185. doi:10.1371/journalpone0152185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fu YB, Peterson GW, Richards KW, Somers D, DePauw RM, Clarke JM (2005) Allelic reduction and genetic shift in the Canadian hard red spring wheat germplasm released from 1845 to 2004. Theor Appl Genet 110:1505–1516

    Article  PubMed  Google Scholar 

  • Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • German SE, Kolmer JA (1992) Effect of gene Lr34 in the enhancement of resistance to leaf rust of wheat. Theor Appl Genet 84:97–105

    Article  PubMed  CAS  Google Scholar 

  • Herrera-Foessel SA, Lagudah ES, Huerta-Espino J, Hayden MJ, Bariana HS, Singh D, Singh RP (2011) New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theor Appl Genet 122:239–249

    Article  PubMed  Google Scholar 

  • Hiebert CW, Thomas JB, McCallum BD, Humphreys DG, DePauw RM, Hayden MJ, Mago R, Schnippenkoetter W, Spielmeyer W (2010) An introgression on wheat chromosome 4DL in RL6077 (Thatcher*6/PI 250413) confers adult plant resistance to stripe rust and leaf rust (Lr67). Theor Appl Genet 121:1083–1091

    Article  PubMed  Google Scholar 

  • Hou L, Chen X, Wang M, See DR, Chao S, Bulli P, Jing J (2015) Mapping a large number of QTL for durable resistance to stripe rust in winter wheat Druchamp using SSR and SNP markers. PLoS One 10:e0126794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keller M, Keller B, Schachermayr G, Winzeler M, Schmid JE, Stamp P, Messmer MM (1999) Quantitative trait loci for resistance against powdery mildew in a segregating wheat x spelt population. Theor Appl Genet 98:903–912

    Article  CAS  Google Scholar 

  • Knox RE, Clarke JM, DePauw RM (2000) Dicamba and growth condition effects on doubled haploid production in durum wheat crossed with maize. Plant Breed 119:289–298

    Article  Google Scholar 

  • Kolmer JA, Garvin DF, Jin Y (2011) Expression of a thatcher wheat adult plant stem rust resistance QTL on chromosome arm 2BL is enhanced by LR34. Crop Sci 51:526–533

    Article  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  PubMed  CAS  Google Scholar 

  • Lagudah ES, Krattinger SG, Herrera-Foessel S, Singh RP, Huerta-Espino J, Spielmeyer W, Brown-Guedira G, Selter LL, Keller B (2009) Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor Appl Genet 119:889–898

    Article  PubMed  CAS  Google Scholar 

  • Lan C, Liang S, Zhou X, Zhou G, Lu Q, Xia X, He Z (2010) Identification of genomic regions controlling adult-plant stripe rust resistance in Chinese landrace pingyuan 50 through bulked segregant analysis. Phytopathology 100:313–318

    Article  PubMed  Google Scholar 

  • Lan C, Zhang Y, Herrera-Foessel SA, Basnet BR, Huerta-Espino J, Lagudah ES, Singh RP (2015) Identification and characterization of pleiotropic and co-located resistance loci to leaf rust and stripe rust in bread wheat cultivar Sujata. Theor Appl Genet 128:549–561

    Article  PubMed  CAS  Google Scholar 

  • Lillemo M, Asalf B, Singh RP, Huerta-Espino J, Chen XM, He ZH, Bjornstad A (2008) The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet 116:1155–1166

    Article  PubMed  CAS  Google Scholar 

  • Lin F, Chen XM (2007) Genetics and molecular mapping of genes for race-specific all-stage resistance and non-race-specific high-temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa. Theor Appl Genet 114:1277–1287

    Article  PubMed  CAS  Google Scholar 

  • Lin F, Chen XM (2009) Quantitative trait loci for non-race-specific, high-temperature adult-plant resistance to stripe rust in wheat cultivar Express. Theor Appl Genet 118:631–642

    Article  PubMed  CAS  Google Scholar 

  • Line RF, Chen X (1995) Successes in Breeding for and Managing Durable Resistance to Wheat Rusts. Plant Dis 79:1254–1255

    Google Scholar 

  • Liu S, Griffey CA, Saghai Maroof MA (2001) Identification of molecular markers associated with adult plant resistance to powdery mildew in common wheat cultivar Massey. Crop Sci 41:1268–1275

    Article  CAS  Google Scholar 

  • Lowe I, Jankuloski L, Chao S, Chen X, See D, Dubcovsky J (2011) Mapping and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat. Theor Appl Genet 123:143–157

    Article  PubMed  PubMed Central  Google Scholar 

  • Mallard S, Gaudet D, Aldeia A, Abelard C, Besnard AL, Sourdille P, Dedryver F (2005) Genetic analysis of durable resistance to yellow rust in bread wheat. Theor Appl Genet 110:1401–1409

    Article  PubMed  CAS  Google Scholar 

  • McCallum B, DePauw RM (2008) A review of wheat cultivars grown in the Canadian prairies. Can J Plant Sci 88:649–677

    Article  Google Scholar 

  • McCallum BD, Chen X, Shorter S, Sadasivaiah RS, Tewari JP (2007a) Stripe rust reaction in 28 canadian wheat cultivars. J Plant Pathol 29:401–407

    Google Scholar 

  • McCallum BD, Fetch T, Chong J (2007b) Cereal rust control in Canada. Aust J Agric Res 58:639–647

    Article  Google Scholar 

  • McCallum BD, Humphreys DG, Somers DJ, Dakouri A, Cloutier S (2012) Allelic variation for the rust resistance gene Lr34/Yr18 in Canadian wheat cultivars. Euphytica 183:261–274

    Article  CAS  Google Scholar 

  • McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts: an atlas of resistance genes. CSIRO Publications, Victoria

    Book  Google Scholar 

  • McIntosh RA, Dubcovsky J, Rogers WJ, Morris CF, Appels R, Xia CX (2014) Catalogue of gene symbols for wheat: 2013–14 supplement. http://www.shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp. Accessed 14 Mar 2017

  • Perez-Lara E, Semagn K, Chen H, Iqbal M, N’Diaye A, Kamran A, Navabi A, Pozniak C, Spaner D (2016) QTLs associated with agronomic traits in the Cutler × AC Barrie spring wheat mapping population using single nucleotide polymorphic markers. PLoS One 11(8):e0160623. doi:10.1371/journalpone0160623

    Article  PubMed  PubMed Central  Google Scholar 

  • Peterson RF, Campbell AB, Hannah AE (1948) A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can J Res 26:496–500

    Article  Google Scholar 

  • Puchalski BJ, Gaudet DA (2011) 2010 Southern Alberta stripe rust survey. Can Plant Dis Surv 91:68–69

    Google Scholar 

  • Randhawa H, Puchalski BJ, Frick M, Goyal A, Despins T, Graf RJ, Laroche A, Gaudet DA (2012) Stripe rust resistance among western Canadian spring wheat and triticale varieties. Can J Plant Sci 92:713–722

    Article  CAS  Google Scholar 

  • Randhawa HS, Asif M, Pozniak C, Clarke JM, Graf RJ, Fox SL, Humphreys DG, Knox RE, DePauw RM, Singh AK, Cuthbert RD, Hucl P, Spaner D, Gupta P (2013) Application of molecular markers to wheat breeding in Canada. Plant Breed 132:458–471

    CAS  Google Scholar 

  • Rapilly F (1979) Yellow rust epidemiology. Ann Rev Phytopathol 17:59–73

    Article  Google Scholar 

  • Ren Y, He Z, Li J, Lillemo M, Wu L, Bai B, Lu Q, Zhu H, Zhou G, Du J, Lu Q, Xia X (2012) QTL mapping of adult-plant resistance to stripe rust in a population derived from common wheat cultivars Naxos and Shanghai 3/Catbird. Theor Appl Genet 125:1211–1221

    Article  PubMed  Google Scholar 

  • Rosewarne GM, Singh RP, Huerta-Espino J, Rebetzke GJ (2008) Quantitative trait loci for slow-rusting resistance in wheat to leaf rust and stripe rust identified with multi-environment analysis. Theor Appl Genet 116:1027–1034

    Article  PubMed  CAS  Google Scholar 

  • Rosewarne GM, Singh RP, Huerta-Espino J, Herrera-Foessel SA, Forrest KL, Hayden MJ, Rebetzke GJ (2012) Analysis of leaf and stripe rust severities reveals pathotype changes and multiple minor QTLs associated with resistance in an Avocet x Pastor wheat population. Theor Appl Genet 124:1283–1294

    Article  PubMed  CAS  Google Scholar 

  • Rosewarne GM, Herrera-Foessel SA, Singh RP, Huerta-Espino J, Lan CX, He ZH (2013) Quantitative trait loci of stripe rust resistance in wheat. Theor Appl Genet 126:2427–2449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh RP (1992a) Association between gene Lr34 for leaf rust resistance and leaf tip necrosis in wheat. Crop Sci 32:874–878

    Article  Google Scholar 

  • Singh RP (1992b) Genetic association of leaf rust resistance gene Lr34 with adult plant resistance to stripe rust in bread wheat. Phytopathology 82:835–838

    Article  Google Scholar 

  • Singh RP, Huerta-Espino J, William HM (2005) Genetics and breeding for durable resistance to leaf and stripe rusts in wheat. Turk J Agric For 29:121–127

    CAS  Google Scholar 

  • Singh RP, Huerta-Espino J, Bhavani S, Herrera-Foessel SA, Singh D, Singh PK, Velu G, Mason RE, Jin Y, Njau P, Crossa J (2011) Race non-specific resistance to rust diseases in CIMMYT spring wheats. Euphytica 179:175–186

    Article  Google Scholar 

  • Singh A, Knox RE, DePauw RM, Singh AK, Cuthbert RD, Campbell HL, Singh D, Bhavani S, Fetch T, Clarke F (2013a) Identification and mapping in spring wheat of genetic factors controlling stem rust resistance and the study of their epistatic interactions across multiple environments. Theor Appl Genet 126:1951–1964

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh RP, Herrera-Foessel S, Huerta-Espino J, Lan CX, Basent BR, Bhavani S, Lagudah EE (2013b) Pleiotropic gene Lr46/Yr29/Pm39/Ltn2 confers slow rusting, adult plant resistance to wheat stem rust fungus. In: Proceedings of the Borlaug Global Rust Initiative, 2013 technical workshop, New Delhi, India, p 171

  • Singh A, Knox RE, DePauw RM, Singh AK, Cuthbert RD, Campbell HL, Shorter S, Bhavani S (2014a) Stripe rust and leaf rust resistance QTL mapping, epistatic interactions, and co-localization with stem rust resistance loci in spring wheat evaluated over three continents. Theor Appl Genet 127:2465–2477

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Herrera-Foessel S, Huerta-Espino J, Singh S, Bhavani S, Lan C, Basnet BR (2014b) Progress towards genetics and breeding for minor genes based resistance to Ug99 and other rusts in CIMMYT high-yielding spring wheat. J Integr Agric 13:255–261

    Article  CAS  Google Scholar 

  • Spielmeyer W, McIntosh RA, Kolmer J, Lagudah ES (2005) Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theor Appl Genet 111:731–735

    Article  PubMed  CAS  Google Scholar 

  • Spielmeyer W, Singh RP, McFadden H, Wellings CR, Huerta-Espino J, Kong X, Appels R, Lagudah ES (2008) Fine scale genetic and physical mapping using interstitial deletion mutants of Lr34/Yr18: a disease resistance locus effective against multiple pathogens in wheat. Theor Appl Genet 116:481–490

    Article  PubMed  CAS  Google Scholar 

  • Su H, Conner RL, Graf RJ, Kuzyk AD (2003) Virulence of Puccinia striiformis f. sp. tritici, cause of stripe rust on wheat, in western Canada from 1984 to 2002. Can J Plant Pathol 25:312–319

    Article  Google Scholar 

  • Suenaga K, Singh RP, Huerta-Espino J, William HM (2003) Microsatellite markers for genes lr34/yr18 and other quantitative trait Loci for leaf rust and stripe rust resistance in bread wheat. Phytopathology 93:881–890

    Article  PubMed  CAS  Google Scholar 

  • Thomas J, Fox S, McCallum B, Fetch T, Gilbert J, Menzies J, Wise I, Smith M, Despins T, Niziol D, Humphreys G, Brown D (2013) Vesper hard red spring wheat. Can J Plant Sci 93:315–321

    Article  Google Scholar 

  • Thomson MJ (2014) High-throughput SNP genotyping to accelerate crop improvement. Plant Breed Biotechnol 2:195–212

    Article  Google Scholar 

  • Tucker DM, Griffey CA, Liu S, Brown-Guedira G, Marshall DS, Maroof MAS (2007) Confirmation of three quantitative trait loci conferring adult plant resistance to powdery mildew in two winter wheat populations. Euphytica 155:1–13

    Article  Google Scholar 

  • Uauy C, Brevis JC, Chen X, Khan I, Jackson L, Chicaiza O, Distelfeld A, Fahima T, Dubcovsky J (2005) High-temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theor Appl Genet 112:97–105

    Article  PubMed  CAS  Google Scholar 

  • Uauy C, Brevis JC, Dubcovsky J (2006) The high grain protein content gene Gpc-B1 accelerates senescence and has pleiotropic effects on protein content in wheat. J Exp Bot 57:2785–2794

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen JW (2009) MapQTL® 6: software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma BV, Wageningen, p 59

    Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, IWGSC, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo MC, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014) Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wellings CR (2011) Global status of stripe rust: a review of historical and current threats. Euphytica 179:129–141

    Article  Google Scholar 

  • Windju SS, Malla K, Belova T, Wilson RC, Dieseth JA, Alsheikh MK, Lillemo M (2017) Mapping and validation of powdery mildew resistance loci from spring wheat cv. Naxos with SNP markers. Mol Breed 37:61

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was received from Agriculture and Agri-Food Canada (Grant number 2531), the Western Grains Research Foundation, and the Saskatchewan Agriculture Development Fund. Technical support from the SCRDC wheat breeding and molecular genetic technical staff, and Plant and Food Research, New Zealand and CIMMYT-Mexico and CIMMYT-Kenya technical staff is greatly appreciated. The authors acknowledge Heather L. Campbell, SCRDC/AAFC and Fran Clarke, AAFC (retired) for their contribution in data management and analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Firdissa E. Bokore or Richard D. Cuthbert.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Xianchun Xia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 76 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bokore, F.E., Cuthbert, R.D., Knox, R.E. et al. Quantitative trait loci for resistance to stripe rust of wheat revealed using global field nurseries and opportunities for stacking resistance genes. Theor Appl Genet 130, 2617–2635 (2017). https://doi.org/10.1007/s00122-017-2980-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-017-2980-7

Navigation