Skip to main content
Log in

SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Novel sequencing technologies were recently used to generate sequences from multiple melon (Cucumis melo L.) genotypes, enabling the in silico identification of large single nucleotide polymorphism (SNP) collections. In order to optimize the use of these markers, SNP validation and large-scale genotyping are necessary. In this paper, we present the first validated design for a genotyping array with 768 SNPs that are evenly distributed throughout the melon genome. This customized Illumina GoldenGate assay was used to genotype a collection of 74 accessions, representing most of the botanical groups of the species. Of the assayed loci, 91 % were successfully genotyped. The array provided a large number of polymorphic SNPs within and across accessions. This set of SNPs detected high levels of variation in accessions from this crop’s center of origin as well as from several other areas of melon diversification. Allele distribution throughout the genome revealed regions that distinguished between the two main groups of cultivated accessions (inodorus and cantalupensis). Population structure analysis showed a subdivision into five subpopulations, reflecting the history of the crop. A considerably low level of LD was detected, which decayed rapidly within a few kilobases. Our results show that the GoldenGate assay can be used successfully for high-throughput SNP genotyping in melon. Since many of the genotyped accessions are currently being used as the parents of breeding populations in various programs, this set of mapped markers could be used for future mapping and breeding efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akashi Y, Fukunda N, Wako T, Masuda M, Kato K (2002) Genetic variation and phylogenetic relationships in East and South Asian melons, Cucumis melo L., based on the analysis of five isozymes. Euphytica 125:385–396

    Article  CAS  Google Scholar 

  • Akhunov E, Nicolet C, Dvorak J (2009) Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay. Theor Appl Genet 119(3):507–517

    Article  PubMed  CAS  Google Scholar 

  • Aranzana MJ, Abbassi el-K, Howad W, Arús P (2010) Genetic variation, population structure and linkage disequilibrium in peach commercial varieties. BMC Genet 11:69

    Article  PubMed  Google Scholar 

  • Bates DM, Robinson RW (1995) Cucumbers, melons and water-melons. In: Smartt J, Simmonds NW (eds) Evolution of Crop Plants, 2nd edn. Longman Scientific, Harlow, pp 89–96

    Google Scholar 

  • Blanca J, Cañizares J, Ziarsolo P, Esteras C, Mir G, Nuez F, Garcia-Mas J, Picó B (2011) Melon transcriptome characterization. SSRs and SNPs discovery for high throughput genotyping across the species. Plant Genome 4(2):118–131

    Article  CAS  Google Scholar 

  • Blanca J, Esteras C, Ziarsolo P, Perez D, Fernández V, Collado C, Rodriguez R, Ballester A, Roig C, Cañizares J, Pico B (2012) Transcriptome sequencing for SNP discovery across Cucumis melo. BMC Genomics 13:280. doi:10.1186/1471-2164-13-280

    Article  PubMed  CAS  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM (2007) Yogesh Ramdoss and Edward S. BucklerTASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19):2633–2635

    Article  PubMed  CAS  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed  Google Scholar 

  • Chancerel E, Lepoittevin C, Le Provost G et al (2011) Development and implementation of a highly-multiplexed SNP array for genetic mapping in maritime pine and comparative mapping with loblolly pine. BMC Genomics 12:368

    Article  PubMed  CAS  Google Scholar 

  • Ching A, Caldwell KS, Jung M, Dolan M, Smith OSH, Tingey S, Morgante M, Rafalski AJ (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet 3:19. doi:10.1186/1471-2156-3-19

    Article  PubMed  Google Scholar 

  • Choudhary S, Gaur R, Gupta S, Bhatia S (2012) Derived genic molecular markers: development and utilization for generating an advanced transcript map of chickpea. Theor Appl Genet 124(8):1449–1462

    Article  PubMed  CAS  Google Scholar 

  • Clepet C, Joobeur T, Zheng Y, Jublot D, Huang M, Truniger V, Boualem A, Hernandez-Gonzalez ME, Dolcet-Sanjuan R, Portnoy V, Mascarell-Creus A, Caño-Delgado A, Katzir N, Bendahmane A, Giovannoni JJ, Aranda MA, Garcia-Mas J, Fei Z (2011) Analysis of expressed sequence tags generated from full-length enriched cDNA libraries of melon. BMC Genomics 12:252

    Article  PubMed  CAS  Google Scholar 

  • Comadran J, Ramsay L, MacKenzie K, Hayes P, Close TJ, Muehlbauer G, Stein N, Waugh R (2011) Patterns of polymorphism and linkage disequilibrium in cultivated barley. Theor Appl Genet 122(3):523–531

    Article  PubMed  Google Scholar 

  • Deleu W, González V, Monfort A, Bendahmane A, Puigdomènech P, Arús P, Garcia-Mas J (2007) Structure of two melon regions reveals high microsynteny with sequenced plant species. Mol Genet Genomics 278(6):611–622

    Article  PubMed  CAS  Google Scholar 

  • Deleu W, Esteras C, Roig C, Gonzalez-To M, Fernandez-Silva I, Gonzalez-Ibeas D, Blanca J, Aranda MA, Arus P, Nuez F, Monforte AJ, Picó MB, Garcia-Mas J (2009) A set of EST-SNPs for map saturation and cultivar identification in melon. BMC Plant Biol 9:90

    Article  PubMed  Google Scholar 

  • Dhillon NPS, Ranjana R, Singh K, Eduardo I, Monforte AJ, Pitrat M, Dhillon NK, Singh PP (2007) Diversity among landraces of Indian snapmelon (Cucumis melo var. momordica). Genet Resour Crop Evol 54:1267–1283

    Article  Google Scholar 

  • Dhillon NPS, Singh J, Fergany M, Monforte AJ, Sureja AK (2009) Phenotypic and molecular diversity among landraces of snapmelon (Cucumis melo var. momordica) adapted to the hot and humid tropics of eastern India. Plant Genet Resour: Charact Util 7(3):291–300. doi:10.1017/S1479262109990050

    Article  CAS  Google Scholar 

  • Díaz A, Fergany M, Formisano G, Ziarsolo P, Blanca J, Fei Z, Staub JE, Zalapa JE, Cuevas HE, Dace G, Oliver M, Boissot N, Dogimont C, Pitrat M, Hofstede R, Koert P, Harel-Beja R, Tzuri G, Portnoy V, Cohen S, Schaffer A, Katzir N, Xu Y, Zhang H, Fukino N, Matsumoto S, Garcia-Mas J, Monforte AJ (2011) A consensus linkage map for molecular markers and quantitative trait loci associated with economically important traits in melon (Cucumis melo L.). BMC Plant Biol 11:111. doi:10.1186/1471-2229-11-111

    Article  PubMed  Google Scholar 

  • Escribano S, Lázaro A, Cuevas HE, López-Sesé AI, Staub JE (2012) Spanish melons (Cucumis melo L.) of the Madrid provenance: a unique germplasm reservoir. Genet Resour Crop Ev. doi:10.1007/s10722-011-9687-4

  • Esteras C, Lunn J, Sulpice R, Blanca J, Garcia-Mas J, Pitrat M, Nuez F, Picó B (2009) Phenotyping a highly diverse core collection of melons to be screened using EcoTILLING. Plant Gem Lisbon Plant Genomics European Meeting. p213

  • Esteras C, Gómez P, Monforte AJ, Blanca J, Vicente-Dólera N, Roig C, Nuez F, Picó B (2012a) High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genomics 13:80. doi:10.1186/1471-2164-13-80

    Article  PubMed  CAS  Google Scholar 

  • Esteras C, Nuez F, Picó B (2012b) Genetic diversity studies in Cucurbits using molecular tools. In: Wang Y, Behera TK, Kole C (eds) Cucurbits: genetics, genomics and breeding of cucurbits. New Hampshire: Science Publishers Inc, Enfield

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • FAO (2012) FAOSTAT: http://faostat.fao.org/site/291/default.aspx. Accessed 4 January 2012

  • Fergany M, Kaur B, Monforte AJ, Pitrat M, Rys C et al (2011) Variation in melon (Cucumis melo) landraces adapted to the humid tropics of southern India. Genet Resour Crop Ev 58(2):225–243

    Article  Google Scholar 

  • Fernandez-Silva I, Eduardo I, Blanca J, Esteras C, Pico B, Nuez F, Arus P, Garcia-Mas J, Monforte AJ (2008) Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.). Theor Appl Genet 118:139–150

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Trujillo JP, Picó B, Garcia-Mas J, Álvarez JM, Monforte AJ (2011) Breeding for fruit quality in melon. In: Jenks MA, Bebeli P (eds) Breeding for fruit quality. Wiley-Blackwell, Ames Chapter 12

    Google Scholar 

  • Fita A, Nuez F, Picó B (2011) Diversity in root architecture and response to P deficiency in seedlings of Cucumis melo L. Euphytica 181(3):323–339. doi:10.1007/s10681-011-0432-z

    Article  CAS  Google Scholar 

  • García E, Jamilena M, Álvarez JI, Arnedo T, Oliver JL, Lozano R (1998) Genetic relationships among melon breeding lines revealed by DNA markers and agronomic traits. Theor Appl Genet 96:878–885

    Article  Google Scholar 

  • Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, González VM, Hénaff E, Cámara F, Cozzuto L, Lowy E, Alioto T, Capella-Gutiérrez S, Blanca J, Cañizares J, Ziarsolo P, Gonzalez-Ibeas D, Rodríguez-Moreno L, Droege M, Du L, Alvarez-Tejado M, Lorente-Galdos B, Melé M, Yang L, Weng Y, Navarro A, Marques-Bonet T, Aranda MA, Nuez, Picó B, Gabaldón B, Roma G, Guigó R, Casacuberta JM, Arús P, Puigdomènech P (2012) The genome of melon (Cucumis melo L.). Genome amplification in the absence of recent duplication in an old widely cultivated species. PNAS, doi/10.1073/pnas.1205415109

  • Gómez-Guillamón ML, Sánchez F, Fernández-Muñoz R (1998) Caracterización de cultivares de melón. Actas de las Jornadas de Selección y Mejora de Plantas Hortícolas. Córdoba, Spain (in Spanish)

  • González-Ibeas D, Blanca J, Roig C, González-To M, Picó B, Truniger V, Gómez P, Deleu W, Caño-Delgado A, Arús P, Nuez F, Garcia-Mas J, Puigdomènech P, Aranda MA (2007) MELOGEN: an EST database for melon functional genomics. BMC Genomics 8:306

    Article  PubMed  Google Scholar 

  • Graham IA, Besser K, Blumer S et al (2010) The genetic map of Artemisia annua L. identifies loci affecting yield of the antimalarial drug artemisinin. Science 327(5963):328–331. doi:10.1126/science.1182612

    Article  PubMed  CAS  Google Scholar 

  • Harel-Beja R, Tzuri G, Portnoy V, Lotan-Pompan M, Lev S, Cohen S, Dai N, Yeselson L, Meir A, Libhaber SE, Avisar E, Melame T, van Koert P, Verbakel H, Hofstede R, Volpin H, Oliver M, Fougedoire A, Stalh C, Fauve J, Copes B, Fei Z, Giovannoni J, Ori N, Lewinsohn E, Sherman A, Burger J, Tadmor Y, Schaffer AA, Katzir N (2010) A genetic map of melon highly enriched with fruit quality QTLs and EST markers, including sugar and carotenoid metabolism genes. Theor Appl Genet 121:511–533

    Article  PubMed  CAS  Google Scholar 

  • Hyten DL, Song Q, Choi I-Y et al (2008) High-throughput genotyping with the GoldenGate assay in the complex genome of soybean. Theor Appl Genet 116:945–952. doi:10.1007/s00122-008-0726-2

    Article  PubMed  CAS  Google Scholar 

  • Janick J, Paris HS, Parrish DC (2007) The cucurbits of Mediterranean antiquity: identification of taxa from ancient images and descriptions. Ann Bot 100:1441–1457

    Article  PubMed  Google Scholar 

  • Jeffrey C (1980) A review of the Cucurbitaceae. Bot J Linn Soc 81:233–247

    Article  Google Scholar 

  • Khana MA, Han Y, Zhao YF, Korban SS (2012) A high-throughput apple SNP genotyping platform using the GoldenGate™ assay. Gene 494(2):196–201. doi:10.1016/j.gene.2011.12.001

    Article  Google Scholar 

  • Krzanowski WJ (2000) Principles of Multivariate analysis: a User’s Perspective. Oxford University Press, Oxford

    Google Scholar 

  • Liu K, Muse SV (2005) Powermarker: integrated analysis environment for genetic marker data. Bioinformatics 21:2128–2129. doi:10.1093/bioinformatics/bti282

    Article  PubMed  CAS  Google Scholar 

  • López-Sesé AI, Staub JE, Gómez-Guillamón ML (2003) Genetic analysis of Spanish melon (Cucumis melo L.) germplasm using a standardized molecular-marker array and geographically diverse reference accessions. Theor Appl Genet 108(1):41–52

    Article  PubMed  Google Scholar 

  • Luan F, Delannay I, Staub JE (2008) Chinese melon (Cucumis melo L.) diversity analyses provide strategies for germplasm curation, genetic improvement, and evidentiary support of domestication patterns. Euphytica 164:445–461

    Article  CAS  Google Scholar 

  • McCreight JD, Staub JE (1993) Indo–US Cucumis germplasm expedition. HortScience 28:467

    Google Scholar 

  • McMullen MD, Kresovich S, Sanchez H et al (2009) Genetic properties of the maize nested association mapping population. Science 325(5941):737–740. doi:10.1126/science.1174320

    Article  PubMed  CAS  Google Scholar 

  • McNally KL, Childs KL, Bohnert R, Davidson RM, Zhao K et al (2009) Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. PNAS 106(30):12273–12278

    Article  PubMed  CAS  Google Scholar 

  • Mliki A, Staub JE, Zhangyong S, Ghorbel A (2001) Genetic diversity in melon (Cucumis melo L.): an evaluation of African germplasm. Genet Resour Crop Evol 48:587–597

    Article  Google Scholar 

  • Monforte AJ, Garcia-Mas J, Arús P (2003) Genetic variability in melon based on microsatellite variation. Plant Breed 122:153–157

    Article  Google Scholar 

  • Munger HM, Robinson RW (1991) Nomenclature of Cucumis melo L. Cucurbit Genet Coop Rpt 14:43–44

    Google Scholar 

  • Nakata E, Staub JE, López-Sesé AI, Katzir N (2005) Genetic diversity of Japanese melon cultivars (Cucumis melo L.) as assessed by random amplified polymorphic DNA and simple sequence repeat markers. Genet Resour Crop Evol 52:405–419

    Article  CAS  Google Scholar 

  • Naudin C (1859) Review des cucurbitace’es cultive Museum. Ann Sci Natl Ser 4 Bot 12:79–164

    Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. II Gene frequency data. J Mol Evol 19:153–170

    Article  PubMed  CAS  Google Scholar 

  • Nhi PTP, Akashi Y, Hang TTM, Tanaka K, Aierken Y, Yamamoto T, Nishida H, Long C, Kato K (2010) Genetic diversity in Vietnamese melon landraces revealed by the analyses of morphological traits and nuclear and cytoplasmic molecular markers. Breeding Sci 60:255–266

    Article  CAS  Google Scholar 

  • Nieto C, Piron F, Dalmais M, Marco CF, Moriones E, Gómez-Guillamón ML, Truniger V, Gómez P, Garcia-Mas J, Aranda MA, Bendahmane A (2007) EcoTILLING for the identification of allelic variants of melon eIF4E, a factor that controls virus susceptibility. BMC Plant Biol 7:34. doi:10.1186/1471-2229-7-34

    Article  PubMed  Google Scholar 

  • Nuez F, Ferrando C, Díez MJ, Costa J, Catalá MS, Cuartero J, Gómez-Guillamón ML (1988) Collecting Cucumis melo L. in Spain. Cucurbit Genet Coop Rep 11:54–56

    Google Scholar 

  • Paris HS, Amar Z, Lev E (2012) Medieval emergence of sweet melons, Cucumis melo (Cucurbitaceae). Ann Bot 110(1):23–33

    Article  PubMed  Google Scholar 

  • Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genet 2(12):e190. doi:10.1371/journal.pgen.0020190

    Article  PubMed  Google Scholar 

  • Peltier J (2009) LOESS Smoothing in Excel. http://peltiertech.com/WordPress/loess-smoothing-in-excel/

  • Pitrat M (2008) Melon (Cucumis melo L.). In: Prohens J, Nuez F (eds) Handbook of crop breeding Vol I: vegetables. Springer, New York, pp 283–315

    Chapter  Google Scholar 

  • Pitrat M, Hanelt P, Hammer K (2000) Some comments on infraspecic classification of cultivars of melon. Acta Hortic 510:29–36

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Heredity 86:248–249

    Google Scholar 

  • Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. PNAS 98(20):11479–11484

    Article  PubMed  CAS  Google Scholar 

  • Renner SS, Schaefer H, Kocyan A (2007) Phylogenetics of Cucumis (Cucurbitaceae): cucumber (C. sativus) belongs in an Asian/Australian clade far from melon (C. melo). BMC Evol Biol 7:58. doi:10.1186/1471-2148-7-58

    Article  PubMed  Google Scholar 

  • Robbins MD, Sim SC, Yang W, Van Deynze A, van der Knaap E, Joobeur T, Francis DM (2011) Mapping and linkage disequilibrium analysis with a genome-wide collection of SNPs that detect polymorphism in cultivated tomato. J Exp Bot 62(6):1831–1845

    Article  PubMed  CAS  Google Scholar 

  • Rostoks N, Ramsay L, MacKenzie K et al (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci USA 103(49):18656–18661

    Article  PubMed  CAS  Google Scholar 

  • Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resources 8:103–106

    Article  Google Scholar 

  • Roy A, Bal SS, Fergany M, Kaur S, Singh H, Malik AA, Singh J, Monforte AJ, Dhillon NPS (2012) Wild melon diversity in India (Punjab State). Genet Resour Crop Ev 59(5):755–767

    Article  CAS  Google Scholar 

  • Rubatzky VE, Yamaguchi M (1997) World vegetable principles, production and nutritive values, 2nd edn. Chapman and Hall, International Thompson Publ, New York 853 p

    Google Scholar 

  • Sebastian P, Schaefer H, Telford IRH, Renner SS (2010) Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species from melon is from Australia. Proc Nat Acad Sci USA 107:14269–14273

    Article  PubMed  CAS  Google Scholar 

  • Silberstein L, Kovalski I, Huang R, Anagnostou K, Jahn MK, Perl-Treves R (1999) Molecular variation in melon (Cucumis melo L.) as revealed by RFLP and RAPD markers. Sci Hort 79:101–111

    Article  CAS  Google Scholar 

  • Sim S-C, Van Deynze A, Stoffel K et al (2012) High-density SNP genotyping of tomato (Solanum lycopersicum L.) reveals patterns of genetic variation due to breeding. PLoS ONE 7(9):e45520. doi:10.1371/journal.pone.0045520

    Article  PubMed  CAS  Google Scholar 

  • Staub JE, Danin-Poleg Y, Fazio G, Horejsi T, Reis N, Katzir N (2000) Comparative analysis of cultivated melon groups (Cucumis melo L.) using random amplified polymorphic DNA and simple sequence repeat markers. Euphytica 115:225–241

    Article  CAS  Google Scholar 

  • Staub JE, López-Sesé I, Fanourakis N (2004) Diversity among melón landraces (Cucumis melo L.) from Greece and their genetic relationships with other melon germplasm of diverse origins. Euphytica 136:151–166

    Article  CAS  Google Scholar 

  • Stepansky A, Kovalski I, Perl-Treves R (1999) Intraspecific classification of melons (Cucumis melo L.) in view of their phenotypic and molecular variation. Plant Syst Evol 217:313–332

    Article  CAS  Google Scholar 

  • Tanaka K, Nishitani A, Akashi Y, Sakata Y, Nishida H, Yoshino H, Kato K (2007) Molecular characterization of South and East Asian melon, Cucumis melo L., and the origin of group conomon var. makuwa and var. conomon revealed by RAPD analysis. Euphytica 153:233–247

    Article  CAS  Google Scholar 

  • van Berloo R (2008) GGT 2.0: Versatile software for visualization and analysis of genetic data. J Hered 99(2):232–236. (Available online at: http://dx.doi.org/10.1093/jhered/esm109)

  • van Berloo R, Zhu A, Ursem R, Verbakel H, Gort G, van Eeuwijk FA (2008) Diversity and linkage disequilibrium analysis within a selected set of cultivated tomatoes. Theor Appl Genet 117(1):89–101

    Article  PubMed  CAS  Google Scholar 

  • van Leeuwen H, Monfort A, Zhang H-B, Puigdomenech P (2003) Identification and characterisation of a melon genomic region containing a resistance gene cluster from a constructed BAC library, microcolinearity between Cucumis melo and Arabidopsis thaliana. Plant Mol Biol 51:703–718

    Article  PubMed  Google Scholar 

  • Whitaker TW, Bemis WP (1976) Cucurbits, Cucumis, Citrullus, Cucurbita, Lagenaria (Cucurbitaceae). In: Simmonds NW (ed) Evolution of Crop Plants. Longrams, New York, USA, pp 64–69

    Google Scholar 

  • Yamamoto T, Nagasaki H, Yonemaru J-I, Ebana K, Nakajima M, Shibaya T, Yano M (2010) Fine definition of the pedigree haplotypes of closely related rice cultivars by means of genome-wide discovery of single-nucleotide polymorphisms. BMC Genomics 11:267. doi:10.1186/1471-2164-11-267

    Article  PubMed  Google Scholar 

  • Yan J, Yang X, Shah T et al (2010) High-throughput SNP genotyping with the GoldenGate assay in maize. Mol Breed 25:441–451. doi:10.1007/s11032-009-9343-2

    Article  CAS  Google Scholar 

  • Yeh FC, Yang R, Boyle TJ, Ye Z, Xiyan JM (2000) POPGENE 32, microsoft windows-based freeware for population genetic analysis. Molecular biology and biotechnology centre. University of Alberta, Edmonton

    Google Scholar 

  • Yuste-Lisbona FJ, López-Sesé AI, Gómez-Guillamón ML (2010) Inheritance of resistance to races 1, 2 and 5 of powdery mildew in the melon TGR-1551. Plant Breeding 129(1):72–75

    Article  Google Scholar 

  • Zhao K, Wright M, Kimball J, Eizenga G, McClung A et al (2010) Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome. PLoS ONE 5(5):e10780. doi:10.1371/journal.pone.0010780

    Article  PubMed  Google Scholar 

  • Zhukovsky P (1951) Agricultural Structure of Turkey (Anatolia). Türkiye Seker Fab. AS. Yay. 20. (in Turkish)

Download references

Acknowledgments

This project was carried out in the frame of the MELONOMICS project (2009–2012) of the Fundación Genoma España and with the contributions of the PLAT KKBE project PIM2010PKB-00691.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antonio J. Monforte or Belén Picó.

Additional information

Communicated by H. Nybom.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2013_2053_MOESM1_ESM.xls

Online Resource Table 1 Melon accessions analyzed in this study. Code used in the current study, common name, accession number from the respective genebanks, origin, seed bank/project donor (COMAV, Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Valencia, Spain; NPGS, USDA/ARS/NCRPIS, USA; MELRIP, ERA-PG project GEN2006-27773-C2-2-E; LA MAYORA, Experimental Station “La Mayora” (IHSM-UMA-CSIC), Málaga, Spain; IMIDRA, Madrilean Research Institute for Rural Development, Agriculture and Food, Madrid, Spain) and cultivar group are specified for each accession. The accessions included in each assay are indicated

122_2013_2053_MOESM2_ESM.xls

Online Resource Table 2 SNPs included in the GoldenGate platform. The SNP and the flanking sequence, the map and genome position, the annotation details of the corresponding unigenes, the custom oligos for the Illumina assay, as well as the Illumina score are listed for each marker. The number of reads of each allele in the sequenced genotypes (for the SNPs selected in silico by Blanca et al. (2011)) are indicated. The SNPs that failed in the GoldenGate assay due to different clustering or amplification problems are indicated in red. Those SNPs that were monomorphic in all varieties are in blue. Those that were monomorphic, heterozygous, or failed in one or both mapping parents and were not mapped are in orange. Markers in LG VII that were fixed in inodorus cultivars and were highly variable in cantalupensis and momordica are in yellow. In purple, loci with high Fst values (>0.75) between inodorus and cantalupesis. In green, SNPs found to be polymorphic in the ‘Piel de Sapo’ commercial group, but monomorphic in the group of ‘Piel de Sapo’ Spanish landraces and/or in the entire inodorus landraces group

122_2013_2053_MOESM3_ESM.xlsx

Online Resource Table 3 SNP genotyping results. Genotype of the 74 accessions analyzed with the GoldenGate array is included for the 698 working markers. Major allele frequency, gene diversity and PIC for each marker in the whole collection, and also in the different groups of varieties, are indicated. Also, Wright’s F-statistics (Fit, Fis and Fst) values for a set of SNPs, polymorphic in the inodorus and cantalupesis group, are included. Those SNPs that were monomorphic in all varieties are in blue. Those that were monomorphic, heterozygous, or failed in one or both mapping parents and were not mapped are in orange. Markers in LG VII that were fixed in inodorus cultivars and were highly variable in cantalupensis and momordica are in yellow. In purple, loci with high Fst values (>0.75) between inodorus and cantalupesis. In green, SNPs found to be polymorphic in the ‘Piel de Sapo’ commercial group, but monomorphic in the group of ‘Piel de Sapo’ Spanish landraces and/or in the entire inodorus landraces group

122_2013_2053_MOESM4_ESM.docx

Online Resource Table 4 Candidate loci under selection. Loci that show high Fst values between the two predefined groups of cultivated melons, inodorus and cantalupensis, are included. The values of the Fst, Fit and Fis, the position in the genetic map, the annotation of the corresponding genes in the melon genome sequence, and the allelic variation in each group are indicated

122_2013_2053_MOESM5_ESM.pptx

Online Resource Fig. 1 Photographs of the melon accessions analyzed in this study. a Commercial Inodorus cultivars; b Spanish Inodorus landraces c Inodorus, ameri and other landraces from Eastern Europe, North of Africa and Asia d Cantalupensis and reticulatus accessions e Flexuosus, chate, dudaim, momordica and conomon accessions f Acidulus, tibish, chito and small-agrestis accessions

122_2013_2053_MOESM6_ESM.pptx

Online Resource Fig. 2 Graphic genotype of each of the accessions analyzed with the GoldenGate platform. The variability of the SNPs along each LG is graphically represented for each genotype. Regions homozygous for the SC/T111 allele are in red/dark blue, and heterozygous in light blue

122_2013_2053_MOESM7_ESM.pptx

Online Resource Fig. 3 First (a) and second (b) preliminary linkage disequilibrium analysis Linkage disequilibrium (r 2) among sequences included in Scaffold00003, Scaffold00011 and Scaffold00016 is plotted versus SNP physical distance in Kb for 20 selected C. melo subsp melo accessions. The black line indicates the fitted curve by second-degree LOESS. The 0.05 false discovery rate is indicated by a horizontal dashed line

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esteras, C., Formisano, G., Roig, C. et al. SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theor Appl Genet 126, 1285–1303 (2013). https://doi.org/10.1007/s00122-013-2053-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-013-2053-5

Keywords

Navigation