Skip to main content
Log in

Dissecting the genetic architecture of agronomic traits in multiple segregating populations in rapeseed (Brassica napus L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Detection of QTL in multiple segregating populations is of high interest as it includes more alleles than mapping in a single biparental population. In addition, such populations are routinely generated in applied plant breeding programs and can thus be used to identify QTL which are of direct relevance for a marker-assisted improvement of elite germplasm. Multiple-line cross QTL mapping and joint linkage association mapping were used for QTL detection. We empirically compared these two different biometrical approaches with regard to QTL detection for important agronomic traits in nine segregating populations of elite rapeseed lines. The plants were intensively phenotyped in multi-location field trials and genotyped with 253 SNP markers. Both approaches detected several additive QTL for diverse traits, including flowering time, plant height, protein content, oil content, glucosinolate content, and grain yield. In addition, we identified one epistatic QTL for flowering time. Consequently, both approaches appear suited for QTL detection in multiple segregating populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Becker HC, Löptien H, Röbbelen G (1999) Breeding: an overview. In: Gómez-Campo C (ed) Biology of Brassica coenospecies. Elsevier, Amsterdam, pp 413–460

    Chapter  Google Scholar 

  • Blanc G, Charcosset A, Mangin B, Gallais A, Moreau L (2006) Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize. Theor Appl Genet 113:206–224

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Geng J, Rahman M, Liu X, Tu J et al (2010) Identification of QTL for oil content, seed yield, and flowering time in oilseed rape (Brassica napus). Euphytica 175:161–174

    Article  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Cochran WG, Cox GM (1957) Experimental designs, 2nd edn. Wiley, New York

    Google Scholar 

  • Delourme R, Falentin C, Huteau V, Clouet V, Horvais R et al (2006) Genetic control of oil content in oilseed rape (Brassica napus L.). Theor Appl Genet 113:1331–1345

    Article  PubMed  CAS  Google Scholar 

  • Ecke W, Uzunova M, Weißleder K (1995) Mapping the genome of rapeseed (Brassica napus L.). II. Localization of genes controlling erucic acid synthesis and seed oil content. Theor Appl Genet 91:972–977

    Article  CAS  Google Scholar 

  • Ecke W, Clemens R, Honsdorf N, Becker HC (2010) Extent and structure of linkage disequilibrium in canola quality winter rapeseed (Brassica napus L.). Theor Appl Genet 120:921–931

    Article  PubMed  CAS  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Ann Rev Plant Biol 54:357–374

    Article  CAS  Google Scholar 

  • Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–338

    Google Scholar 

  • Grami B, Stefansson BR (1977) Genetics of protein and oil content in summer rape: heritability, numbers of effective factors, and correlations. Can J Plant Sci 57:937–943

    Article  CAS  Google Scholar 

  • Hasan M, Friedt W, Pons-Kühnemann J, Freitag NM, Link K et al (2008) Association of gene-linked SSR markers to seed glucosinolate content in oilseed rape (Brassica napus ssp. napus). Theor Appl Genet 116:1035–1049

    Article  PubMed  CAS  Google Scholar 

  • Hill WG, Robertson A (1968) Linkage disequilibrium in finite populations. Theor Appl Genet 38:226–231

    Article  Google Scholar 

  • Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455

    PubMed  CAS  Google Scholar 

  • Kimber DS, McGregor DI (1995) The species and their origin, cultivation and world production. In: Kimber D, McGregor DI (eds) Brassica oilseeds: production and utilization. CABI Publishing, Wallingford, pp 1–9

    Google Scholar 

  • Liu W, Gowda M, Steinhoff J, Maurer HP, Würschum T et al (2011) Joint linkage and association mapping in an elite maize breeding population and implications for genomic selection. Theor Appl Genet 123:847–858. doi:10.1007/s00122-011-1631-7

    Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland

    Google Scholar 

  • Mahmood T, Rahman MH, Stringam GR, Yeh F, Good AG (2006) Identification of quantitative trait loci (QTL) for oil and protein contents and their relationship with other seed quality traits in Brassica juncea. Theor Appl Genet 113:1211–1220

    Article  PubMed  CAS  Google Scholar 

  • Maurer HP, Melchinger AE, Frisch M (2008) Population genetic simulation and data analysis with Plabsoft. Euphytica 161:133–139

    Article  Google Scholar 

  • Mei DS, Wang HZ, Hu Q, Li YD, Xu YS et al (2009) QTL analysis on plant height and flowering time in Brassica napus. Plant Breed 128:458–465

    Article  Google Scholar 

  • Melchinger AE, Utz HF, Schön CC (1998) Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and larger bias in estimates of QTL effects. Genetics 149:383–403

    PubMed  CAS  Google Scholar 

  • Qiu D, Morgan C, Shi J, Liu R, Zhuang X et al (2006) A comparative linkage map of rapeseed and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet 114:67–80

    Article  PubMed  CAS  Google Scholar 

  • Reif JC, Liu W, Gowda M, Maurer HP, Möhring J et al (2010) Genetic basis of agronomically important traits in sugar beet (Beta vulgaris L.) investigated with joint linkage association mapping. Theor Appl Genet 8:1489–1495

    Article  Google Scholar 

  • Reif JC, Maurer HP, Korzun V, Ebmeyer E, Miedaner T et al (2011a) Mapping QTLs with main and epistatic effects underlying grain yield and heading time in soft winter wheat. Theor Appl Genet 123:283–292

    Article  PubMed  Google Scholar 

  • Reif JC, Gowda M, Maurer HP, Longin CFH, Korzun V et al (2011b) Association mapping for quality traits in soft winter wheat. Theor Appl Genet 122:961–970

    Article  PubMed  Google Scholar 

  • SAS Institute Inc (2008) SAS user’s guide, version 9.2. SAS Institute, Cary

    Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  Google Scholar 

  • Smooker AM, Wells R, Morgan C, Beaudoin F, Cho K et al (2011) The identification and mapping of candidate genes and QTL involved in the fatty acid desaturation pathway in Brassica napus. Theor Appl Genet 122:1075–1090

    Google Scholar 

  • Steinhoff J, Liu W, Maurer HP, Würschum T, Longin FH et al (2011) Multiple-line cross QTL-mapping in European elite maize. Crop Sci (accepted)

  • Utz HF, Melchinger AE, Schön CC (2000) Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics 154:1839–1849

    PubMed  Google Scholar 

  • Uzunova M, Ecke W, Weißleder K, Röbbelen G (1995) Mapping the genome of rapeseed (Brassica napus L.). I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theor Appl Genet 90:194–204

    Article  CAS  Google Scholar 

  • Van Inghelandt D et al (2011) Extent and genome-wide distribution of linkage disequilibrium in commercial maize germplasm. Theor Appl Genet 123:11–20

    Article  PubMed  Google Scholar 

  • Wright S (1978) Evolution and genetics of populations, variability within and among natural populations, vol 4th. The University of Chicago Press, Chicago, p 91

    Google Scholar 

  • Würschum T, Liu W, Gowda M, Maurer HP, Fischer S et al (2011a) Comparison of biometrical models for joint linkage association mapping. Heredity. doi:10.1038/hdy.2011.78

  • Würschum T, Maurer HP, Kraft T, Janssen G, Nilsson C et al (2011b) Genome-wide association mapping of agronomic traits in sugar beet. Theor Appl Genet. doi:10.1007/s00122-011-1653-1

  • Würschum T, Maurer HP, Schulz B, Möhring J, Reif JC (2011c) Genome-wide association mapping reveals epistasis and genetic interaction networks in sugar beet. Theor Appl Genet 123:109–118

    Article  PubMed  Google Scholar 

  • Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551

    Article  PubMed  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was conducted within the Biometric and Bioinformatic Tools for Genomics based Plant Breeding project of the GABI—FUTURE initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Würschum.

Additional information

Communicated by C. Quiros.

T. Würschum and W. Liu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 137 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Würschum, T., Liu, W., Maurer, H.P. et al. Dissecting the genetic architecture of agronomic traits in multiple segregating populations in rapeseed (Brassica napus L.). Theor Appl Genet 124, 153–161 (2012). https://doi.org/10.1007/s00122-011-1694-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1694-5

Keywords

Navigation