Abstract
Fusarium head blight (FHB) of wheat causes not only significant reduction in grain yield and end-use quality, but also the contamination of the grain with mycotoxins that are detrimental to human and animal health after consumption of infected grain. Growing resistant varieties is an effective approach to minimize the FHB damage. The Chinese wheat landrace Haiyanzhong (HYZ) shows a high level of resistance to FHB. To identify quantitative trait loci (QTL) that contribute to FHB resistance in HYZ, 136 recombinant inbred lines (RIL) were developed from a cross of HYZ and Wheaton, a hard spring wheat cultivar from the USA. The RIL and their parents were evaluated for percentage of scabbed spikelets (PSS) in both greenhouse and field environments. Five QTL were detected for FHB resistance in HYZ with one major QTL on 7DL. The 7DL QTL peaked at SSR marker Xwmc121, which is flanked by the SSR markers Xcfd46 and Xwmc702. This QTL explained 20.4–22.6% of the phenotypic variance in individual greenhouse experiments and 15.9% in a field experiment. Four other minor QTL on 6BS (two QTL), 5AS and 1AS each explained less than 10% of the phenotypic variance in individual experiments. HYZ carried the favorable alleles associated with FHB resistance at the QTL on 7DL, 6BS and 5AS, and the unfavorable allele at the QTL on 1AS. The major QTL on 7D can be used to improve the FHB resistance in wheat breeding programs and add diversity to the FHB resistance gene pool.




Similar content being viewed by others
References
Anderson JA, Stack RW, Liu S, Waldron BL, Fjeld AD, Coyne C, Moreno-Sevilla B, Fetch JM, Song QJ, Cregan PB, Frohberg RC (2001) DNA markers for Fusarium head blight resistance QTLs its two wheat populations. Theor Appl Genet 102:1164–1168
Bai G, Kolb FL, Shaner G, Domier LL (1999) Amplified fragment length polymorphism markers linked to a major quantitative trait locus controlling scab resistance in wheat. Phytopathology 89:343–348
Bai G, Shaner G (2004) Management and resistance in wheat and barley to fusarium head blight. Annu Rev Phytopathol 42:135–161
Buerstmayr H, Ban T, Anderson J (2009) QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed 128:1–26
Buerstmayr H, Lemmens M, Hartl L, Doldi L, Steiner B, Stierschneider M, Ruckenbauer P (2002) Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (Type II resistance). Theor Appl Genet 104:84–91
Chen J, Griffey CA, Maroof MAS, Stromberg EL, Biyashev RM, Zhao W, Chappell MR, Pridgen TH, Dong Y, Zeng Z (2006) Validation of two major quantitative trait loci for fusarium head blight resistance in Chinese wheat line W14. Plant Breed 125:99–101
Cuthbert PA, Somers DJ, Brule-Babel A (2007) Mapping of Fhb2 on chromosome 6BS: a gene controlling Fusarium head blight field resistance in bread wheat (Triticum aestivum L.). Theor Appl Genet 114:429–437
Draeger R, Gosman N, Steed A, Chandler E, Thomsett M, Srinivasachary, Schondelmaier J, Buerstmayr H, Lemmens M, Schmolke M, Mesterhazy A, Nicholson P (2007) Identification of QTLs for resistance to Fusarium head blight, DON accumulation and associated traits in the winter wheat variety Arina. Theor Appl Genet 115:617–625
Jiang GL, Dong Y, Shi J, Ward RW (2007a) QTL analysis of resistance to Fusarium head blight in the novel wheat germplasm CJ 9306. II. Resistance to deoxynivalenol accumulation and grain yield loss. Theor Appl Genet 115:1043–1052
Jiang GL, Shi J, Ward RW (2007b) QTL analysis of resistance to Fusarium head blight in the novel wheat germplasm CJ 9306. I. Resistance to fungal spread. Theor Appl Genet 116:3–13
Kosambi D (1944) The estimation of map distance from recombination values. Ann Eugen:12:172–175
Li C, Zhu H, Zhang C, Lin F, Xue S, Cao Y, Zhang Z, Zhang L, Ma Z (2008) Mapping QTLs associated with Fusarium-damaged kernels in the Nanda 2419 × Wangshuibai population. Euphytica 163:185–191
Lin F, Kong ZX, Zhu HL, Xue SL, Wu JZ, Tian DG, Wei JB, Zhang CQ, Ma ZQ (2004) Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419 × Wangshuibai population. I. Type II resistance. Theor Appl Genet 109:1504–1511
Liu S, Hall MD, Griffey CA, McKendry AL (2009) Meta-analysis of QTL associated with Fusarium head blight resistance in wheat. Crop Sci 49:1955–1968
Loffler M, Schon C-C, Miedaner T (2009) Revealing the genetic architecture of FHB resistance in hexaploid wheat (Triticum aestivum L.) by QTL meta-analysis. Mol Breed 23:473–474
Maguire TL, Collins GG, Sedgley M (1994) A modified CTAB DNA extraction procedure for plants belonging to the family proteaceae. Plant Mol Biol Report 12:106–109
McCartney CA, Somers DJ, Fedak G, DePauw RM, Thomas J, Fox SL, Humphreys DG, Lukow O, Savard ME, McCallum BD, Gilbert J, Cao W (2007) The evaluation of FHB resistance QTLs introgressed into elite Canadian spring wheat germplasm. Mol Breed 20:209–221
Mesterhazy A (1995) Types and components of resistance to Fusarium head blight of wheat. Plant Breed 114:377–386
Schroeder HW, Christensen JJ (1963) Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology 53:831–838
Shen X, Zhou M, Lu W, Ohm H (2003) Detection of Fusarium head blight resistance QTL in a wheat population using bulked segregant analysis. Theor Appl Genet 106:1041–1047
Trail F (2009) For blighted waves of grain: Fusarium graminearum in the postgenomics era. Plant Physiol 149:103–110
Van Ooijen J, Voorrips R (2001) JoinMap® 3.0 Software for the calculation of genetic linkage maps. Plant Research International, Wageningen
Von Der Ohe C, Ebmeyer E, Korzun V, Miedaner T (2010) Agronomic and quality performance of winter wheat backcross populations carrying non-adapted Fusarium head blight resistance QTL. Crop Sci 50:2283–2290
Wang S, Basten C, Zeng Z-B (2007) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)
Wilde F, Korzun V, Ebmeyer E, Geiger HH, Miedaner T (2007) Comparison of phenotypic and marker-based selection for Fusarium head blight resistance and DON content in spring wheat. Mol Breed 19:357–370
Wilde F, Schon CC, Korzun V, Ebmeyer E, Schmolke M, Hartl L, Miedaner T (2008) Marker-based introduction of three quantitative-trait loci conferring resistance to Fusarium head blight into an independent elite winter wheat breeding population. Theor Appl Genet 117:29–35
Yang Z, Gilbert J, Fedak G, Somers DJ (2005) Genetic characterization of QTL associated with resistance to Fusarium head blight in a doubled-haploid spring wheat population. Genome 48:187–196
Yu JB, Bai GH, Cai SB, Ban T (2006) Marker-assisted characterization of Asian wheat lines for resistance to Fusarium head blight. Theor Appl Genet 113:308–320
Yu JB, Bai GH, Cai SB, Dong YH, Ban T (2008) New Fusarium head blight-resistant sources from Asian wheat germplasm. Crop Sci 48:1090–1097
Zhou W, Kolb FL, Bai G, Shaner G, Domier LL (2002) Genetic analysis of scab resistance QTL in wheat with microsatellite and AFLP markers. Genome 45:719–727
Acknowledgment
This project is partly funded by US Wheat and Barley Scab Initiative and by the Jiangsu Provincial Natural Science Foundation of China (grant No. BK2010312). Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. Contribution No. 11-180-J from the Kansas Agricultural Experiment Station, Manhattan, KS, USA.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Communicated by D. Mather.
Rights and permissions
About this article
Cite this article
Li, T., Bai, G., Wu, S. et al. Quantitative trait loci for resistance to fusarium head blight in a Chinese wheat landrace Haiyanzhong. Theor Appl Genet 122, 1497–1502 (2011). https://doi.org/10.1007/s00122-011-1549-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00122-011-1549-0