Skip to main content
Log in

High-throughput genotyping of hop (Humulus lupulus L.) utilising diversity arrays technology (DArT)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Implementation of molecular methods in hop (Humulus lupulus L.) breeding is dependent on the availability of sizeable numbers of polymorphic markers and a comprehensive understanding of genetic variation. However, use of molecular marker technology is limited due to expense, time inefficiency, laborious methodology and dependence on DNA sequence information. Diversity arrays technology (DArT) is a high-throughput cost-effective method for the discovery of large numbers of quality polymorphic markers without reliance on DNA sequence information. This study is the first to utilise DArT for hop genotyping, identifying 730 polymorphic markers from 92 hop accessions. The marker quality was high and similar to the quality of DArT markers previously generated for other species; although percentage polymorphism and polymorphism information content (PIC) were lower than in previous studies deploying other marker systems in hop. Genetic relationships in hop illustrated by DArT in this study coincide with knowledge generated using alternate methods. Several statistical analyses separated the hop accessions into genetically differentiated North American and European groupings, with hybrids between the two groups clearly distinguishable. Levels of genetic diversity were similar in the North American and European groups, but higher in the hybrid group. The markers produced from this time and cost-efficient genotyping tool will be a valuable resource for numerous applications in hop breeding and genetics studies, such as mapping, marker-assisted selection, genetic identity testing, guidance in the maintenance of genetic diversity and the directed breeding of superior cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  PubMed  CAS  Google Scholar 

  • Anderson JA, Churchill GA, Autrique JE, Tanksley SD, Sorrells ME (1993) Optimizing parental selection for genetic-linkage maps. Genome 36:181–186

    Article  PubMed  CAS  Google Scholar 

  • Bassil NV, Gilmore B, Oliphant JM, Hummer KE, Henning JA (2008) Genic SSRs for European and North American hop (Humulus lupulus L.). Genet Resour Crop Evol 55:959–969

    Article  Google Scholar 

  • Brady JL, Scott NS, Thomas MR (1996) DNA typing of hops (Humulus lupulus) through application of RAPD and microsatellite marker sequences converted to sequence tagged sites (STS). Euphytica 91:277–284

    Article  CAS  Google Scholar 

  • Cerenak A, Satovic Z, Javornik B (2006) Genetic mapping of hop (Humulus lupulus L.) applied to the detection of QTLs for alpha-acid content. Genome 49:485–494

    Article  PubMed  CAS  Google Scholar 

  • Danilova TV, Danilov SS, Karlov GI (2003) Assessment of genetic polymorphism in hop (Humulus lupulus L.) cultivars by ISSR-PCR analysis. Russ J Genet 39:1252–1257

    Article  CAS  Google Scholar 

  • Davis E (1957) Morphological complexes in hops (Humulus lupulus L.) with special reference to the American race. Ann Mo Bot Gard 44:271–294

    Article  Google Scholar 

  • Earl DA (2009) Structure Harvester v0.3. http://users.soe.ucsc.edu/~dearl/software/struct_harvest/. Accessed: 2009

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Goese M, Kammhuber K, Bacher A, Zenk MH, Eisenreich W (1999) Biosynthesis of bitter acids in hops. Eur J Biochem 263:447–454

    Article  PubMed  CAS  Google Scholar 

  • Green CP (1986) Gas-liquid chromatography, hop oils and variety identification. Engl Hops 6:10–11

    Google Scholar 

  • Hadonou AM, Walden R, Darby P (2004) Isolation and characterization of polymorphic microsatellites for assessment of genetic variation of hops (Humulus lupulus L.). Mol Ecol Notes 4:280–282

    Article  CAS  Google Scholar 

  • Hartl L, Seefelder S (1998) Diversity of selected hop cultivars detected by fluorescent AFLPs. Theor Appl Genet 96:112–116

    Article  CAS  Google Scholar 

  • Heller-Uszynska K, Uszynski G, Huttner E, Evers M, Carlig J, Caig V, Aitken K, Jackson P, Piperidis G, Cox M, Gilmour R, D’Hont A, Butterfield M, Glaszmann JC, Kilian A (2010) Diversity arrays technology effectively reveals DNA polymorphism in a large and complex genome of sugarcane. Mol Breed. doi:10.1007/s11032-010-9460-y

  • Henning JA, Steiner JJ, Hummer KE (2004) Genetic diversity among world hop accessions grown in the USA. Crop Sci 44:411–417

    Article  CAS  Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:E25

    Article  PubMed  CAS  Google Scholar 

  • Jakobsson M, Risenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  PubMed  CAS  Google Scholar 

  • Jakše J, Kindlhofer K, Javornik B (2001) Assessment of genetic variation and differentiation of hop genotypes by microsatellite and AFLP markers. Genome 44:773–782

    Article  PubMed  Google Scholar 

  • Jakše J, Satovic Z, Javornik B (2004) Microsatellite variability among wild and cultivated hops (Humulus lupulus L.). Genome 47:889–899

    Article  PubMed  Google Scholar 

  • Jakše J, Stajner N, Luthar Z, Jeltsch JM, Javornik B (2010) Development of transcript-associated microsatellite markers for diversity and linkage mapping studies in hop (Humulus lupulus L.). Mol Breed (in press)

  • James KE, Schneider H, Ansell SW, Evers M, Robba L, Uszynski G, Pedersen N, Newton AE, Russell SJ, Vogel JC, Kilian A (2008) Diversity arrays technology (DArT) for pan-genomic evolutionary studies of non-model organisms. PLoS ONE 3(2):e1682

    Google Scholar 

  • Kammhuber K (1997) Investigations about the contents of the lupulin gladns of hop leaves and their importance for hop breeding. Monschr Brauwiss 50:210–213

    CAS  Google Scholar 

  • Kilian A, Huttner E, Wenzl P, Jaccoud D, Carling J, Caig V, Evers M, Heller-Uszynska K, Uszynski G, Cayla C, Patarpuwadol S, Xia L, Yang S, Thomson B (2005) The fast and the cheap: SNP and DArT-based whole genome profiling for crop improvement. In: Tuberosa R, Phillips R, Gale M (eds) Proceedings of the international congress in the wake of the double helix: from the green revolution to the gene revolution. Avenue Media, Bologna, pp 443–461

  • Koie K, Inaba A, Okada Y, Kaneko T, Ito K (2005) Construction of the genetic linkage map and QTL analysis on hop (Humulus lupulus L.). Acta Hortic 668:59–67

    CAS  Google Scholar 

  • Kopecký D, Bartoš J, Lukaszewski AJ, Baird JH, Černoch V, Kölliker R, Rognli OA, Blois H, Caig V, Lübberstedt T, Studer B, Shaw P, Doležel J, Kilian A (2009) Development and mapping of DArT markers within the FestucaLolium complex. BMC Genomics 10:473

    Article  PubMed  Google Scholar 

  • Kralj D, Zupanec J, Vasilj D, Kralj S, Psenicnik J (1991) Variability of essential oils of hops, Humulus lupulus L. J Inst Brew 97:197–206

    CAS  Google Scholar 

  • Kump B, Javornik B (1996) Evaluation fo genetic variability among common buckwheat (Fagopyrum exculentum Monech) publications by RAPD markers. Plant Sci 114:149–158

    Article  CAS  Google Scholar 

  • Liu J, Burdette JE, Xu H, Gu C, Van Breemen RB, Bhat KPL, Booth N, Constantinou AI, Pezzuto JM, Fong HHS, Farnsworth NR, Bolton JL (2001) Evaluation of estrogenic activity of plant extracts for the potential treatment of menopausal symptoms. J Agric Food Chem 49:2472–2479

    Article  PubMed  CAS  Google Scholar 

  • Luikart G, England PR, Tallmon D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4:981–994

    Article  PubMed  CAS  Google Scholar 

  • Milligan S, Kalita J, Pocock V, Heyerick A, De Cooman L, Rong H, De Keukeleire D (2002) Oestrogenic activity of the hop phyto-oestrogen, 8-prenylnaringenin. Reproduction 123:235–242

    Article  PubMed  CAS  Google Scholar 

  • Miranda C, Stevens J, Helmrich A, Henderson M, Rodriguez R, Yang Y, Peinzer M, Barnes D, Buhler D (1999) Antiproliferative and cytotoxic effects of prenylated flavonoids from hops (Humulus lupulus) in human cancer cell lines. Food Chem Toxicol 37:271–285

    Article  PubMed  CAS  Google Scholar 

  • Moir M (2000) Hops—a millennium review. J Amer Soc Brew Chem 58:131–146

    CAS  Google Scholar 

  • Mori Y (1961) Mechanism of humulone and lupulone synthesis in the hop cone 1: free amino acid in the developing cones of hops. Bull Brew Sci 6:19–22

    Article  Google Scholar 

  • Murakami A (2000) Hop variety classification using the genetic distance based on RAPD. J Inst Brew 106:157–161

    CAS  Google Scholar 

  • Murakami A, Darby P, Javornik B, Pais MSS, Seigner E, Lutz A, Svoboda P (2006a) Microsatellite DNA analysis of wild hops, Humulus lupulus L. Genet Resour Crop Evol 53:1553–1562

    Article  CAS  Google Scholar 

  • Murakami A, Darby P, Javornik B, Pais MSS, Seigner E, Lutz A, Svoboda P (2006b) Molecular phylogeny of wild Hops, Humulus lupulus L. Heredity 97:66–74

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nei M, Li W-H (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  PubMed  CAS  Google Scholar 

  • Neve RA (1991) Hops. Chapman and Hall, London

    Google Scholar 

  • Nickerson GB, Williams PA, Haunold A (1988) Composition of male hop oil. J Am Soc Brew Chem 46:14–17

    CAS  Google Scholar 

  • Patzak J (2001) Comparison of RAPD, STS, ISSR and AFLP molecular methods used for assessment of genetic diversity in hop (Humulus lupulus L.). Euphytica 121:9–18

    Article  CAS  Google Scholar 

  • Patzak J, Vrba L, Matoušek J (2007) New STS molecular markers for assessment of genetic diversity and DNA fingerprinting in hop (Humulus lupulus L.). Genome 50:15–25

    Article  PubMed  CAS  Google Scholar 

  • Patzak J, Nesvadba V, Henychová A, Krofta K (2010a) Assessment of the genetic diversity of wild hops (Humulus lupulus L.) in Europe using chemical and molecular analyses. Biochem Syst Ecol 38:136–145

    Article  CAS  Google Scholar 

  • Patzak J, Nesvadba V, Krofta K, Henychová A, Inalovic M, Richards K (2010b) Evaluation of genetic variability of wild hops (Humulus lupulus L.) in Canada and Caucasus region by chemical and molecular methods. Genome 53:545–557

    Article  PubMed  CAS  Google Scholar 

  • Peredo EL, Revilla MÁ, Reed BM, Javornik B, Cires E, Prieto JAF, Arroyo-García R (2010) The influence of European and American wild germplasm in hop (Humulus lupulus L.) cultivars. Genet Resour Crop Evol 57:575–586

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Risterucci AM, Hippolyte I, Perrier X, Xia L, Caig V, Evers M, Huttner E, Kilian A, Glaszmann JC (2009) Development and assessment of diversity arrays technology for high-throughput DNA analyses in musa. Theor Appl Genet 119:1093–1103

    Article  PubMed  CAS  Google Scholar 

  • Roberts JB, Stevens R (1962) Composition and biogenesis of essential oil in hop. J Inst Brew 68:420–426

    CAS  Google Scholar 

  • Rohlf FJ (2000) NTSYS-pc: numerical taxonomy and multivariate analysis system, version 2.1. Exeter Software, Setauket

    Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Seefelder S, Ehrmaier H, Schweizer G, Seigner E (2000a) Genetic diversity and phylogenetic relationships among accessions of hop, Humulus lupulus, as determined by amplified fragment length polymorphism fingerprinting compared with pedigree data. Plant Breed 119:257–263

    Article  CAS  Google Scholar 

  • Seefelder S, Ehrmaier H, Schweizer G, Seigner E (2000b) Male and female genetic linkage map of hops, Humulus lupulus. Plant Breed 119:249–255

    Article  CAS  Google Scholar 

  • Small E (1978) A numerical and nomenclatural analysis of morpho-geographic taxa of Humulus. Syst Bot 3:37–76

    Article  Google Scholar 

  • Small E (1980) The relationships of hop cultivars and wild variants of Humulus lupulus. Can J Bot 58:676–686

    Google Scholar 

  • Small E (1981) A numerical analysis of morph-geographic groups of cultivars of Humulus lupulus based on samples of cones. Can J Bot 59:311–324

    Article  Google Scholar 

  • Stajner N, Satovic Z, Cerenak A, Javornik B (2008) Genetic structure and differentiation in hop (Humulus lupulus L.) as inferred from microsatellites. Euphytica 161:301–311

    Article  CAS  Google Scholar 

  • Stevens JF, Taylor AW, Nickerson GB, Ivancic M, Henning J, Haunold A, Deinzer ML (2000) Prenylflavonoid variation in Humulus lupulus: distribution and taxonomic significance of xanthogalenol and 4′-O′methylxanthohumol. Phytochemistry 53:759–775

    Article  PubMed  CAS  Google Scholar 

  • Student (1908) The probable error or a mean. Biometrika VI:1–25

  • Šuštar-Vozlič J, Javornik B (1999) Genetic relationships in cultivars of hop, Humulus lupulus L., determined by RAPD analysis. Plant Breed 118:175–181

    Article  Google Scholar 

  • Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4.0b10. Sinauer, Sunderland

    Google Scholar 

  • Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437–460

    PubMed  CAS  Google Scholar 

  • Tinker NA, Kilian A, Wight CP, Heller-Uszynska K, Wenzl P, Rines HW, Bjørnstad Å, Howarth CJ, Jannink JL, Anderson JM, Rossnagel BG, Stuthman DD, Sorrells ME, Jackson EW, Tuvesson S, Kolb FL, Olsson O, Federizzi L, Carson ML, Ohm HW, Molnar SJ, Scoles GJ, Eckstein PE, Bonman JM, Ceplitis A, Langdon T (2009) New DArT markers for oat provide enhanced map coverage and global germplasm characterization. BMC Genomics 10. doi:10.1186/1471-2164-10-39

  • Townsend MS, Henning JA (2009) AFLP discrimination of native North American and cultivated hop. Crop Sci 49:600–607

    Article  CAS  Google Scholar 

  • Tressl R, Engel KH, Kossa M, Köppler H (1983) Characterization of tricyclic sesquiterpenes in hop (Humulus lupulus, var. Hersbrucker Spät). J Agric Food Chem 31:892–897

    Article  CAS  Google Scholar 

  • Verzele M (1986) Centenary review: 100 years of hop chemistry and its relevance to brewing. J Inst Brew 92:32–48

    CAS  Google Scholar 

  • Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101:9915–9920

    Article  PubMed  CAS  Google Scholar 

  • Wittenberg AHJ, Van Der Lee T, Cayla C, Kilian A, Visser RGF, Schouten HJ (2005) Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana. Mol Genet Genomics 274:30–39

    Article  PubMed  CAS  Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354

    Google Scholar 

  • Xia L, Peng K, Yang S, Wenzl P, Carmen De Vicente M, Fregene M, Kilian A (2005) DArT for high-throughput genotyping of Cassava (Manihot esculenta) and its wild relatives. Theor Appl Genet 110:1092–1098

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Pang W, Ash G, Harper J, Carling J, Wenzl P, Huttner E, Zong X, Kilian A (2006) Low level of genetic diversity in cultivated Pigeonpea compared to its wild relatives is revealed by diversity arrays technology. Theor Appl Genet 113:585–595

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been conducted with support from Horticulture Australia Limited (project numbers OT04003 and HP08002), Hop Products Australia, S.S. Steiner Inc. and John I. Haas Inc. The authors would like to acknowledge the contribution of Grey Leggett who was the Hop Breeder with Hop Products Australia between 1988 and 2006. Thanks also go to Kim Hummer (NCGR Corvalis) for providing assistance with source accession details.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Koutoulis.

Additional information

Communicated by P. Heslop-Harrison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howard, E.L., Whittock, S.P., Jakše, J. et al. High-throughput genotyping of hop (Humulus lupulus L.) utilising diversity arrays technology (DArT). Theor Appl Genet 122, 1265–1280 (2011). https://doi.org/10.1007/s00122-011-1529-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1529-4

Keywords

Navigation