Skip to main content
Log in

QTL analyses for seed iron and zinc concentrations in an intra-genepool population of Andean common beans (Phaseolus vulgaris L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Legumes provide essential micronutrients that are found only in low amounts in the cereals or root crops. An ongoing project at CIAT has shown that the legume common bean is variable in the amount of seed minerals (iron, zinc, and other elements), vitamins, and sulfur amino acids that they contain and that these traits are likely to be inherited quantitatively. In this study we analyzed iron and zinc concentrations in an Andean recombinant inbred line (RIL) population of 100 lines derived from a cross between G21242, a Colombian cream-mottled climbing bean with high seed iron/zinc and G21078, an Argentinean cream seeded climbing bean with low seed iron/zinc. The population was planted across three environments; seed from each genotype was analyzed with two analytical methods, and quantitative trait loci (QTL) were detected using composite interval mapping and single-point analyses. A complete genetic map was created for the cross using a total of 74 microsatellite markers to anchor the map to previously published reference maps and 42 RAPD markers. In total, nine seed mineral QTL were identified on five linkage groups (LGs) with the most important being new loci on b02 and other QTL on b06, b08, and b07 near phaseolin. Seed weight QTL were associated with these on b02 and b08. These Andean-derived QTL are candidates for marker-assisted selection either in combination with QTL from the Mesoamerican genepool or with other QTL found in inter and intra-genepool crosses, and the genetic map can be used to anchor other intra-genepool studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Afanador L, Haley SD, Kelly JD (1993) Adoption of a mini-prep DNA extraction method for RAPD marker analysis in common bean. Ann Rep Bean Improv Coop 35:11

    Google Scholar 

  • Ariza-Nieto M, Blair MW, Welch RM, Glahn RP (2007) Screening of bioavailability patterns in eight bean (Phaseolus vulgaris L.) genotypes using the Caco-2 cell in vitro model. J Agr Food Chem 55:7950–7956

    Article  CAS  Google Scholar 

  • Basten CJ, Weir BS, Zeng ZB (2001) QTL Cartographer: a reference manual and tutorial for QTL mapping. Department of Statistics, North Carolina State University, Raleigh

    Google Scholar 

  • Beebe S, Gonzalez AV, Rengifo J (2000) Research on trace minerals in the common bean. Food Nutr Bull 21:387–391

    Google Scholar 

  • Blair MW, Pedraza F, Buendia HF, Gaitán-Solís E, Beebe SE, Gepts P, Tohme J (2003) Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theor Appl Genet 107:1362–1374

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Giraldo MC, Buendia HF, Tovar E, Duque MC, Beebe SE (2006a) Microsatellite marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet 113:100–109

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Iriarte G, Beebe S (2006b) QTL analysis of yield traits in an advanced backcross population derived from a cultivated Andean × wild common bean (Phaseolus vulgaris L.) cross. Theor Appl Genet 112:1149–1163

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Buendia HF, Giraldo MC, Métais I, Peltier D (2008) Characterization of AT-rich microsatellites in common bean (Phaseolus vulgaris L.). Theor Appl Genet 118:91–103

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Astudillo C, Grusak M, Graham R, Beebe S (2009a) Inheritance of seed iron and zinc content in common bean (Phaseolus vulgaris L.). Mol Breed 23:197–207

    Article  CAS  Google Scholar 

  • Blair MW, Muñoz-Torres M, Giraldo MC, Pedraza F (2009b) Development and diversity assessment of Andean-derived, gene-based microsatellites for common bean (Phaseolus vulgaris L.). BMC Plant Biol 9:100

    Article  PubMed  Google Scholar 

  • Blair MW, Muñoz M, Pedraza F, Giraldo MC, Buendía HF, Hurtado N (2009c) Development of microsatellite markers for common bean (Phaseolus vulgaris L.) based on screening of non-enriched small insert genomic libraries. Genome 52:772–782

    Article  CAS  PubMed  Google Scholar 

  • Briat J-F, Lobreaux S (1997) Iron transport and storage in plants. Trends Plant Sci 2:187–193

    Article  Google Scholar 

  • Broughton WJ, Hernandez G, Blair M, Beebe S, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.)––model food legumes. Plant Soil 252:55–128

    Article  CAS  Google Scholar 

  • Brown JWS, Ma Y, Bliss FA, Hall TC (1981) Genetic variation in the subunits of globulin-1 storage protein of French bean. Theor Appl Genet 59:83–88

    CAS  Google Scholar 

  • Checa OE, Blair MW (2008) Mapping QTL for climbing ability and component traits in common bean (Phaseolus vulgaris L.). Mol Breed 22:201–215

    Article  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed  Google Scholar 

  • Cichy KA, Caldas GV, Snapp SS, Blair MW (2009) QTL analysis of seed iron, zinc and phosphorus levels in an Andean bean population. Crop Sci 49:1742–1750

    Article  CAS  Google Scholar 

  • Frossard E, Bucher M, Machler F, Mozafar A, Hurrell R (2000) Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. J Sci Food Agric 80:861–879

    Article  CAS  Google Scholar 

  • Gaitán E, Duque MC, Edwards KJ, Tohme J (2002) Microsatellite repeats in common bean (Phaseolus vulgaris): isolation, characterization, and cross-species amplification in Phaseolus ssp. Crop Sci 42:2128–2136

    Article  Google Scholar 

  • Gelin JR, Forster S, Grafton KF, McClean P, Rojas-Cifuentes GA (2007) Analysis of seed-zinc and other nutrients in a recombinant inbred population of navy bean (Phaseolus vulgaris L.). Crop Sci 47:1361–1366

    Article  CAS  Google Scholar 

  • Gepts P (1999) Development of an integrated linkage map. In: Singh SP (ed) Common bean improvement for the twenty-first century. Kluwer, Dordrecht, pp 389–400

    Google Scholar 

  • Graham R, Senadhira D, Beebe S, Iglesias C, Monasterio I (1999) Breeding for micronutrient density in edible portions of staple food crops: conventional approaches. Field Crops Res 60:57–80

    Article  Google Scholar 

  • Graham RD, Welch RM, Bouis HE (2001) Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principals, perspectives and knowledge gaps. Adv Agron 70:77–144

    Article  Google Scholar 

  • Grisi MCM, Blair MW, Gepts P, Brondani C, Pereira PAA, Brondani RPV (2007) Genetic mapping of microsatellite markers in common bean (Phaseolus vulgaris) population BAT93 × Jalo EEP558. Genet Mol Res 6:691–706

    CAS  PubMed  Google Scholar 

  • Guzman-Maldonado SH, Martínez O, Acosta-Gallegos J, Guevara-Lara FJ, Paredes-Lopez O (2003) Putative quantitative trait loci for physical and chemical components of common bean. Crop Sci 43:1029–1035

    Article  CAS  Google Scholar 

  • Islam FMA, Basford KE, Jara C, Redden RJ, Beebe SE (2002) Seed compositional and disease resistance differences among gene pools in cultivated common bean. Genet Resour Crop Evol 49:285–293

    Article  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly M, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Metais I, Hamon B, Jalouzot R, Peltier D (2002) Structure and level of genetic diversity in various bean types evidenced with microsatellite markers isolated from a genomic enriched library. Theor Appl Genet 104:1346–1352

    Article  CAS  PubMed  Google Scholar 

  • Moraghan JT (2004) Accumulation and within-seed distribution of iron in common bean and soybean. Plant Soil 264:287–297

    Article  CAS  Google Scholar 

  • Moraghan JT, Grafton K (2002) Distribution of selected elements between the seed coat and embryo of two black bean cultivars. J Plant Nutr 25:169–176

    Article  CAS  Google Scholar 

  • Nelson JC (1997) QGENE: software for marker-based genomic analysis and breeding. Mol Breed 3:229–235

    Article  Google Scholar 

  • Pedrosa A, Vallejos CE, Bachmair A, Schwizer D (2003) Integation of common bean (Phaseolus vulgaris L.) linkage and chromosomal maps. Theor Appl Genet 106:205–212

    CAS  PubMed  Google Scholar 

  • Pfeiffer W, McClafferty B (2007) HarvestPlus: breeding crops for better nutrition. Crop Sci 47:S88–S105

    Article  Google Scholar 

  • Singh SP, Gepts P, Debouck DG (1991a) Races of common bean (Phaseolus vulgaris, Fabaceae). Econ Bot 45:379–396

    Article  Google Scholar 

  • Singh SP, Gutierrez JA, Molina A, Urrea C, Gepts P (1991b) Genetic diversity in cultivated common bean: II. Marker-based analysis of morphological and agronomic traits. Crop Sci 31:23–29

    Article  CAS  Google Scholar 

  • Spence MJ, Henzl MT, Lammers PJ (1991) The stucture of a Phaseolus vulgaris cDNA encoding the iron storage protein ferritin. Plant Mol Biol 17:499–504

    Google Scholar 

  • Wang TL, Domoney C, Hedley CL, Casey R, Grusak MA (2003) Can we improve the nutritional quality of legume seeds? Plant Phys 131:886–891

    Article  CAS  Google Scholar 

  • Wardrop AJ, Wicks RE, Entsch B (1999) Occurrence and expression of members of the ferritin gene family in cowpeas. Biochem J 337:523–530

    Article  CAS  PubMed  Google Scholar 

  • Welch RM, Graham RD (1999) A new paradigm for world agriculture: productive, sustainable and nutritious food systems to meet human needs. Field Crops Res 60:1–10

    Article  Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364

    Article  CAS  PubMed  Google Scholar 

  • Wortmann CS, Kirkby RA, Eledu CA, Allen DJ (1998) Atlas of common bean (Phaseolus vulgaris L.) production in Africa. CIAT Pan-African Bean Research Alliance, p 133

  • Yu K, Park J, Poysa V, Gepts P (2000) Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). J Hered 91:429–434

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported principally by a Harvest Plus challenge program grant to MWB, and funds from DANIDA to MWB and SEB used for early map development and ICP analysis. We are grateful to A. Hoyos and O. Mosquera for excellent field and laboratory assistance, respectively and to T. Fowles at Waite lab for ICP analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew W. Blair.

Additional information

Communicated by A. Bervillé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blair, M.W., Astudillo, C., Rengifo, J. et al. QTL analyses for seed iron and zinc concentrations in an intra-genepool population of Andean common beans (Phaseolus vulgaris L.). Theor Appl Genet 122, 511–521 (2011). https://doi.org/10.1007/s00122-010-1465-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-010-1465-8

Keywords

Navigation