Skip to main content
Log in

Integration of genome and phenotypic scanning gives evidence of genetic structure in Mesoamerican common bean (Phaseolus vulgaris L.) landraces from the southwest of Europe

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Southwestern Europe has been considered as a secondary centre of genetic diversity for the common bean. The dispersal of domesticated materials from their centres of origin provides an experimental system that reveals how human selection during cultivation and adaptation to novel environments affects the genetic composition. In this paper, our goal was to elucidate how distinct events could modify the structure and level of genetic diversity in the common bean. The genome-wide genetic composition was analysed at 42 microsatellite loci in individuals of 22 landraces of domesticated common bean from the Mesoamerican gene pool. The accessions were also characterised for phaseolin seed protein and for nine allozyme polymorphisms and phenotypic traits. One of this study’s important findings was the complementary information obtained from all the polymorphisms examined. Most of the markers found to be potentially under the influence of selection were located in the proximity of previously mapped genes and quantitative trait loci (QTLs) related to important agronomic traits, which indicates that population genomics approaches are very efficient in detecting QTLs. As it was revealed by outlier simple sequence repeats, loci analysis with STRUCTURE software and multivariate analysis of phenotypic data, the landraces were grouped into three clusters according to seed size and shape, vegetative growth habit and genetic resistance. A total of 151 alleles were detected with an average of 4 alleles per locus and an average polymorphism information content of 0.31. Using a model-based approach, on the basis of neutral markers implemented in the software STRUCTURE, three clusters were inferred, which were in good agreement with multivariate analysis. Geographic and genetic distances were congruent with the exception of a few putative hybrids identified in this study, suggesting a predominant effect of isolation by distance. Genomic scans using both markers linked to genes affected by selection (outlier) and neutral markers showed advantages relative to other approaches, since they help to create a more complete picture of how adaptation to environmental conditions has sculpted the common bean genomes in southern Europe. The use of outlier loci also gives a clue about what selective forces gave rise to the actual phenotypes of the analysed landraces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afanador L, Hadley S, Kelly JD (1993) Adoption of a mini-prep DNA extraction method for RAPD marker analysis in common bean (Phaseolus vulgaris L.). Bean Improv Coop 36:10–11

    Google Scholar 

  • Antao T, Lopes A, Lopes RJ, Beja-Pereira A (2008) LOSITAN: A workbench to detect molecular adaptation based on a Fst-outlier method. BMC Bioinformatics 9:323

    Article  PubMed  CAS  Google Scholar 

  • Balardin RS, Kelly JD (1998) Interaction between Colletotrichum lindemuthianum races and gene pool diversity in Phaseolus vulgaris. J Am Soc Hortic Sci 123:1038–1047

    Google Scholar 

  • Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc B 263:1619–1626

    Article  Google Scholar 

  • Beaver JS, Kelly JD (1994) Comparison of selection methods for dry bean landraces derived from crosses between gene pools. Crop Sci 25:923–926

    Article  Google Scholar 

  • Becerra Velasquez L, Gepts P (1994) RFLP diversity of common bean (Phaseolus vulgaris L.) in its centers of origin. Genome 37:256–263

    Article  Google Scholar 

  • Beebe S, Toro O, González AV, Chacón MI, Debouck D (1997) Wildweed-crop complex of common bean (Phaseolus vulgaris L., Fabaceae) in the Andes of Peru and Colombia, and their implications for conservation and breeding. Genet Resour Crop Evol 44:73–91

    Article  Google Scholar 

  • Beebe SE, Skroch PW, Tohme J, Duque MC, Pedraza F, Nienhuis J (2000) Structure of genetic diversity among common bean landraces of Middle American origin based on correspondence analysis of RAPD. Crop Sci 40:264–273

    Google Scholar 

  • Beebe SE, Rengifo J, Gaitan E, Duque MC, Tohme J (2001) Diversity and origin of Andean landraces of common bean. Crop Sci 41:854–862

    Article  Google Scholar 

  • Blair MW, Pedraza F, Buendia H, Gaitan E, Beebe S, Gepts P, Tohme J (2003) Development of a genome wide anchored microsatellite for common bean (Phaseolus vulgaris L). Theor Appl Genet 107:1362–1374

    Article  PubMed  CAS  Google Scholar 

  • Blair MW, Giraldo MC, Buendia HF, Tovar E, Duque MC, Beebe S (2006a) Microsatellite marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet 113:100–109

    Article  PubMed  CAS  Google Scholar 

  • Blair MW, Iriarte G, Beebe S (2006b) QTL analysis of yield traits in an advanced backcross landrace derived from a cultivated Andean wild common bean (Phaseolus vulgaris L) cross. Theor Appl Genet 112:1149–1163

    Article  PubMed  CAS  Google Scholar 

  • Blair MW, Fregene MA, Beebe SE, Ceballos H (2007) Marker-Assisted Selection in Common Beans and Cassava. Chap. 7. In: Guimaraes E (ed) Marker-assisted selection (MAS) in crops, livestock, forestry and fish: Current status and the way forward. FAO, Rome, Italy

    Google Scholar 

  • Bonin A, Taberlet P, Claude M, Pompanon F (2006) Explorative genome scans to detect candidate loci for adaptation along a gradient of altitude in the common frog (Rana temporaria). Mol Biol Evol 23(4):773–783

    Article  PubMed  CAS  Google Scholar 

  • Brown JWS, Ma Y, Bliss FA (1981) Genetic variation in the subunits of globulin 1-storage protein of French bean. Theor Appl Genet 59:83–88

    CAS  Google Scholar 

  • Buso GSC, Amaral ZPS, Brondani RPV, Ferreira ME (2006) Microsatellite markers for the common bean - Phaseolus vulgaris. Mol Ecol Notes 6:252–254

    Article  CAS  Google Scholar 

  • Caixeta ET, Borem A, Alzate-Marin AL, Fagundes S (2005) Allelic relationships for genes that confer resistance to angular leaf sport in common bean. Euphytica 145:237–245

    Article  CAS  Google Scholar 

  • Campbell D, Bernatchez L (2004) Generic Scan Using AFLP Markers as a Means to Assess the Role of Directional Selection in the Divergence of Sympatric Whitefish Ecotypes. Mol Biol Evol 21(5):945–956

    Article  PubMed  CAS  Google Scholar 

  • Chacón MI, Pickersgill S, Debouck D (2005) Domestication patterns in common bean (Phaseolus vulgaris L.) and the origin of Mesoamerican and Andean cultivated races. Theor Appl Genet 110:432–444

    Article  CAS  Google Scholar 

  • Checa C, Blair MW (2008) Mapping QTL for climbing ability and component traits in common bean (Phaseolus vulgaris L.). Molecular Breed 22:201–215

    Article  CAS  Google Scholar 

  • Chen Y, Nelson RL (2005) Relationship between origin and genetic diversity in chinese soybean germplasm. Crop Sci 45:1645–1651

    Article  CAS  Google Scholar 

  • Crow JF, Aoki K (1984) Group selection for a polygenic behavioral trait: estimating the degree of landrace subdivision. Proc Natl Acad Sci USA 81:6073–6077

    Article  PubMed  CAS  Google Scholar 

  • Debouck DG, Araya Villalobos R, Ocampo Sánchez RA, González UWG (1989) Collecting Phaseolus in Costa Rica. FAO/IBPGR Plant Genet Resour Newsl 78(79):44–46

    Google Scholar 

  • Díaz LM, Blair MW (2006) Race structure within the Mesoamerican gene pool of common bean (Phaseolus vulgaris L.) as determined by microsatellite markers. Theor Appl Genet 114:143–154

    Article  PubMed  Google Scholar 

  • Evano G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  Google Scholar 

  • Freyre R, Ríos R, Guzmán L, Debouck DG, Gepts P (1996) Ecogeographic distribution of Phaseolus spp. (Fabaceae) in Bolivia. Econ Bot 50:195–215

    Google Scholar 

  • Freyre R, Skroch P, Geffroy V, Adam-Blondon A-F, Shirmohamadali A, Johnson W, Llaca V, Nodari R, Pereira P, Tsai S-M, Tohme J, Dron M, Nienhuis J, Vallejos C, Gepts P (1998) Towards an integrated linkage map of common bean. 4. Development of a core linkage map and alignment of RFLP maps. Theor Appl Genet 97:847–856

    Article  CAS  Google Scholar 

  • Gaitán-Sólis E, Duque MC, Edwards K, Tohme J (2002) Microsatellite repeats in common bean (Phaseolus vulgaris L.): isolation, characterization, and cross-species amplification in Phaseolus spp. Crop Sci 42:2128–2136

    Google Scholar 

  • Geffroy V, Sicard D, de Oliveira JCF, Sevgnac M, Cohen S, Gepts P, Neema C, Langin T, Dron M (1999) Identification of an ancestral resistance gene cluster involved in the co-evolution process between Phaseolus vulgaris and its fungal pathogen Colletotrichum lindemuthianum. Mol Plant Microb Interact 12:774–784

    Article  CAS  Google Scholar 

  • Gepts P (1988) Phaseolin as an evolutionary marker. In: Resources of Phaseolus beans. Kluwer, Dordtrecht, pp 215–241

  • Gepts P (2004) Domestication as a long-term selection experiment. Plant Breed Rev 24(part 2):1–44

    Google Scholar 

  • Gepts P, Bliss FA (1985) F1 hybrid weakness in the common bean: differential geographic origin suggests two gene pools in cultivated bean germplasm. J Hered 76:447–450

    Google Scholar 

  • Gepts P, Bliss FA (1988) Dissemination pathways of common bean (Phaseolus vulgaris, Fabaceae) deduced from phaseolin electrophoretic variability. II. Europe and Africa. Econ Bot 42:86–104

    Google Scholar 

  • Gepts P, Osborn T, Rashka K, Bliss F (1986) Phaseolin–protein variability in wild forms and landraces of the common bean (Phaseolus vulgaris L.): evidence for multiple centers of domestication. Econ Bot 40:451–468

    CAS  Google Scholar 

  • Guerra-Sanz JM (2004) Short communication - New SSR markers of Phaseolus vulgaris from sequence databases. Plant Breed 123:87–89

    Article  CAS  Google Scholar 

  • Guzmán P, Gilbertson RL, Nodari R, Johnson WC, Temple SR, Mandela D, Mkandawire ABC, Gepts P (1995) Characterization of variability in the fungus Phaseoisariopsis griseola suggests coevolution with the common bean (Phaseolus vulgaris). Phytopathology 85:600–607

    Article  Google Scholar 

  • Huang XQ, Börner A, Röder MS, Ganal MW (2002) Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor Appl Genet 105:699–707

    Article  PubMed  CAS  Google Scholar 

  • Innes NL, Conway J, Taylor JD (1984) Resistance to halo blight in the Cambridge accessions V4604 and V4058 of Phaseolus beans. Ann Appl Biol 104:307–314

    Article  Google Scholar 

  • Islam FMA, Basford KE, Redden RJ, Gonzalez AV, Kroonenberg PM, Beebe SE (2002) Genetic variability in cultivated common bean beyond the two major gene pools. Genet Resour Crop Evol 49:271–283

    Article  Google Scholar 

  • Jarvis DI, Hodgkin T (1999) Wild relatives and crop cultivars: detecting natural introgression and farmer selection of new genetic combinations in agro-ecosystem. Mol Ecol 8:S159–S173

    Article  Google Scholar 

  • Khairallah M, Sears B, Adams M (1992) Mitochondrial restriction fragment length polymorphisms in wild Phaseolus vulgaris L.: insights on the domestication of the common bean. Theor Appl Genet 84:915–922

    Article  CAS  Google Scholar 

  • Koenig R, Gepts P (1989) Allozyme diversity in wild Phaseolus vulgaris: further evidence for two mayor centers of genetic diversity. Theor Appl Genet 78:809–817

    Article  Google Scholar 

  • Koinange EMK, Singh SP, Gepts P (1996) Genetic control of the domestication syndrome in common bean. Crop Sci 36:1037–1045

    Article  Google Scholar 

  • Kornegay J, White JW, Ortíz de la Cruz O (1992) Growth habit and gene pool effects on inheritance of yield in common bean. Euphytica 62:171–180

    Article  Google Scholar 

  • Kwak M, Gepts P (2009) Structure of genetic diversity in the two major gene pools of common bean (Phaseolus vulgaris L., Fabaceae). Theor Appl Genet 118:979–992

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Nelson RL (2001) Genetic diversity among soybean ac cessions from three countries measured by RAPDs. Crop Sci 41:1337–1347

    Article  CAS  Google Scholar 

  • Liu K, Muse S (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics Appl Note 21(9):2128–2129

    Article  CAS  Google Scholar 

  • Londo JP, Chiang YC, Hung KH, Chiang TY, Schaal BA (2006) Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc Natl Acad Sci USA 103:9578–9583

    Article  PubMed  CAS  Google Scholar 

  • Luikart G, England PR, Tallmon D (2003) The power and promise of population genomics: From genotyping to genome typing. Nat Rev Genet 4(12):981–994

    Article  PubMed  CAS  Google Scholar 

  • Masi G, Logozzo P, Donini P, Spagnoletti Z (2009) Analysis of genetic structure in widely distributed common bean landraces with different plant growth habits using SSR and AFLP markers. Crop Sci 49:187–199

    Article  CAS  Google Scholar 

  • McClean PE, Lee RK, Miklas PN (2004) Sequence diversity analysis of dihydrofl avonol 4-reductase intron1 in common bean. Genome 47:266–280

    Article  PubMed  CAS  Google Scholar 

  • Metais I, Hamon B, Jalouzot R, Peltier D (2002) Structure and level of genetic diversity in various bean types evidenced with microsatellite markers isolated from a genomic enriched library. Theor Appl Genet 104:1346–1352

    Article  PubMed  CAS  Google Scholar 

  • Mitchell SE, Kresovich S, Jester CA, Hernandez CJ, Szewc-McFadden AK (1997) Application of multiplex PCR and fluorescence-based, semi-automated allele sizing technology for genotyping plant genetic resources. Crop Sci 37:617–624

    Article  CAS  Google Scholar 

  • Nei M (1978) Estimation of average heterozygocity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  CAS  Google Scholar 

  • Nielsen R (2005) Molecular signatures of natural selection. Annu Rev Genet 39:197–218

    Article  PubMed  CAS  Google Scholar 

  • Pañeda A, Rodríguez-Suárez C, Campa A, Ferreira JJ, Giraldez R (2008) Molecular markers linked to the fin gene controlling determinate growth habit in common bean. Euphytica 162:241–248

    Article  CAS  Google Scholar 

  • Papa R, Acosta J, Delgado-Salinas A, Gepts P (2005) A genome-wide analysis of differentiation between wild and domesticated Phaseolus vulgaris from Mesoamerica. Theor Appl Genet 111:1147–1158

    Article  PubMed  CAS  Google Scholar 

  • Paredes OM, Gepts P (1995) Extensive introgression of Middle American germplasm into Chilean common bean landraces. Genet Resour Crop Evol 42:29–41

    Article  Google Scholar 

  • Pastor-Corrales MA (1991) Estandarización de variedades diferenciales y de designación de razas de Colletotrichum lindemuthianum. Phytopathology 81:694

    Google Scholar 

  • Pastor-Corrales MA, Jara C, Singh SP (1998) Pathogenic variation in sources of and breeding for resistance to Phaeoisariopsis griseola causing angular leaf spot in common bean. Euphytica 103:161–171

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Piergiovanni A, Taranto G, Losavio FP, Pignone D (2006) Common bean (Phaseolus vulgaris L.) landraces from Abruzzo and Lazio regions (Central Italy). Genet Resour Crop Evol 53:313–322

    Google Scholar 

  • Pritchard JK, Wen W (2004) Documentation for the STRUCTURE software Version 2. Chicago. http://www.pritch.bsd.uchicagoedu/software/structure2_1.html

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of landrace structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Rick CM, Holle M (1990) Andean Lycopersicon esculentum var. cerasiformie. Genetic variation and its evolutionary significance. Econ Bot 44:69–78

    Google Scholar 

  • Rodiño P, Santalla M, González AM, De Ron AM, Singh SP (2006) Novel genetic variation in common bean from the Iberian Peninsula. Crop Sci 46:2540–2546

    Article  CAS  Google Scholar 

  • Rosales-Serna R, Hernandez-Delgado S, Gonzalez-Paz M, Acosta-Gallegos JA, Mayek-Perez N (2005) Genetic relationships and diversity revealed by AFLP markers in Mexican common bean bred cultivars. Crop Sci 45:1951–1957

    Article  CAS  Google Scholar 

  • Rossi M, Bitocchi E, Bellucci E, Nanni L, Rau D, Attene G, Papa R (2009) Linkage disequilibrium and population structure in wild and domesticated populations of Phaseolus vulgaris L. Evol Appl. doi:10.1111/j.1752-4571.2009.00082.x

  • Sánchez E, Sifres A, Casañas F, Nuez F (2008) The endangered future of organoleptically prestigious European landraces: Ganxet bean (Phaseolus vulgaris L.) as an example of a crop originating in the Americas. Genet Resour Crop Evol 55:45–52

    Article  CAS  Google Scholar 

  • Santalla M, Rodiño AP, De Ron AM (2002) Allozyme evidence supporting southwestern Europe as a secondary center of genetic diversity for common bean. Theor Appl Genet 104:934–944

    Article  PubMed  CAS  Google Scholar 

  • Schlötterer C (2003) Hitchhiking mapping—functional genomics from the population genetics perspective. Trends Genet 19:32–38

    Article  PubMed  Google Scholar 

  • Sicard D, Nanni L, Porfiri O, Bulfon D, Papa R (2005) Genetic diversity of Phaseolus vulgaris L. and Phaseolus coccineus L. landraces in central Italy. Plant Breed 124:464–472

    Article  CAS  Google Scholar 

  • Singh SP (1995) Selection for seed yield in Middle American versus Andean x Middle American interracial common bean landraces. Plant Breed 114:269–271

    Article  Google Scholar 

  • Singh SP, Gutiérrez JA (1990) Effect of plant density on selection for seed yield in two landrace types of Phaseolus vulgaris L. Euphytica 51:173–178

    Google Scholar 

  • Singh SP, Gepts P, Debouck DG (1991a) Races of common bean (Phaseolus vulgaris, Fabaceae). Econ Bot 45:379–396

    Google Scholar 

  • Singh SP, Gutiérrez JA, Molina A, Urrea C, Gepts P (1991b) Genetic diversity in cultivated common bean: II. Marker-based analysis of morphological and agronomic traits. Crop Sci 31:23–29

    Article  CAS  Google Scholar 

  • Singh S, Nodari R, Gepts P (1991c) Genetic diversity in cultivated common bean. I. Allozymes. Crop Sci 31:19–23

    Article  CAS  Google Scholar 

  • Singh SP, Terán H, Germán Muñoz C, Takegami JC (1999) Two cycles of recurrent selection for seed yield in common bean. Crop Sci 39:391–397

    Article  Google Scholar 

  • Slatkin M, Barton N (1989a) A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43:1349–1368

    Article  Google Scholar 

  • Slatkin M, Barton NH (1989b) A comparison of three indirect methods for estimating the average level of gene flow. Evolution 43:1349–1368

    Article  Google Scholar 

  • Storz JF (2005) Using genome scans of DNA polymorphism to infer adaptive landrace divergence. Mol Ecol 14:671–688

    Article  PubMed  CAS  Google Scholar 

  • Tohme J, González DO, Beebe S, Duque MC (1996) AFLP analysis of gene pools of a wild bean core collection. Crop Sci 36:1375–1384

    Article  CAS  Google Scholar 

  • CIAT (Centro Internacional de Agricultura Tropical) (1987) Standard Voysest O. 2000. Mejoramiento genético del frijol (Phaseolus vulgaris system for the evaluation of bean germplasm. Van Schoohoven L.): Legado de variedades de América Latina 1930–1999. Pastor- Corrales (compilers). CIAT. Cali, Colombia

  • van Schoonhoven A, Pastor-Corrales MA (1987) Standard system for the evaluation of bean germplasm. CIAT, Cali, Colombia

    Google Scholar 

  • Vasemägi A, Nilsson J, Primmer CR (2005) Expressed sequence tag (EST) linked microsatellites as a source of gene associated polymorphisms for detecting signatures of divergent selection in Atlantic salmon (Salmo salar L.). Mol Biol Evol 22:1067–1076

    Article  PubMed  CAS  Google Scholar 

  • Vavilov NI (1951) The origin, variation, immunity and breeding of cultivated plants. Chron Bot 13:1–366 Translated by K. Start

    Google Scholar 

  • Vigouroux Y, MacMullen M, Hittinger CT, Houchins K, Schulz L, Kresovich S, Matsuoka Y, Doebley J (2002) Identifying genes of agronomic importance in maize by screening microsatellites for evidence of selection during domestication. Proc Natl Acad Sci USA 99:9650–9655

    Article  PubMed  CAS  Google Scholar 

  • Vitalis R, Dawson K, Boursot P (2001) Interpretation of variation across marker loci as evidence of selection. Genetics 158:1811–1823

    PubMed  CAS  Google Scholar 

  • Vitalis R, Dawson K, Boursot P, Belkhir K (2003) DetSel 1.0: a computer program to detect markers responding to selection. J Hered 94:429–431

    Article  PubMed  CAS  Google Scholar 

  • Vitte C, Ishii T, Lamy F, Brar D, Panaud O (2004) Genomic paleontology provides evidence for two distinct origins of Asian rice (Oryza sativa L.). Mol Genet Genom 272:504–511

    Article  CAS  Google Scholar 

  • Wang L, Guan R, Zhangxiong L, Chang R, Qiu L (2006) Genetic Diversity of Chinese Cultivated Soybean Revealed by SSR Markers. Crop Sci 46:1032–1038

    Article  Google Scholar 

  • Weir BS, Cockerman C (1984) Estimating F-statistics for the analysis of landrace structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • White JW, Singh SP, Pino C, Rios MJ, Buddenhagen I (1992) Effects of seed size and photoperiod response on crop growth and yield of common bean. Field Crops Res 23:159–175

    Article  Google Scholar 

  • Xu P, Tao DY, Hu FY, Zhou JW, Deng XN (2005) Interspecific hybridization of cultivated rice for breeding japonica rice in Yunnan province. Chin J Rice Sci 19(1):41–46

    CAS  Google Scholar 

  • Yaish MWF, Pérez De La Vega M (2003) Isolation of (GA)n microsatellite sequences and description of a predicted MADS-box sequence isolated from common bean (Phaseolus vulgaris L.). Genet Mol Biol 26:337–342

    Article  CAS  Google Scholar 

  • Yu K, Park J, Poysa V, Gepts P (2000) Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). J Hered 91:429–434

    Article  PubMed  CAS  Google Scholar 

  • Zizumbo-Villarreal D, Colunga-García Marín P, De la Cruz E, Payró Delgado-Valerio P, Gepts P (2005) Landrace structure and evolutionary dynamics of wild–weedy–domesticated complexes of common bean in a Mesoamerican region. Crop Sci 45:1073–1083

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research was supported by RF2006-00001, AGL2008-02091/AGR and INCITE07PXI403088ES projects from the Spanish Government and Xunta de Galicia, respectively. The authors are grateful to the Diputación Provincial de Pontevedra for farm facilities and María Lores for technical assistance. M. De La Fuente is grateful to the Xunta de Galicia for awarding her a fellowship grant, which allowed her to carry out this study. Special thanks to J.D. Kelly for anthracnose, S.P. Singh and P. Miklas for BCMV and BCMNV, and D. Fourier and J. Murillo for bacterial inocula.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Santalla.

Additional information

Communicated by R. Varshney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santalla, M., De Ron, A.M. & De La Fuente, M. Integration of genome and phenotypic scanning gives evidence of genetic structure in Mesoamerican common bean (Phaseolus vulgaris L.) landraces from the southwest of Europe. Theor Appl Genet 120, 1635–1651 (2010). https://doi.org/10.1007/s00122-010-1282-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-010-1282-0

Keywords

Navigation