Skip to main content
Log in

Candidate genes and QTLs for fruit ripening and softening in melon

Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Different factors affect the quality of melon fruit and among them long shelf life is critical from the consumer’s point of view. In melon, cultivars showing both climacteric and non-climacteric ripening types are found. In this study we have investigated climacteric ripening and fruit softening using a collection of near-isogenic lines (NILs) derived from the non-climacteric melon parental lines PI 161375 (SC) and “Piel de Sapo” (PS). Surprisingly, we found that QTL eth3.5 in NIL SC3-5b induced a climacteric-ripening phenotype with increased respiration and ethylene levels. Data suggest that the non-climacteric phenotypes from PI 161375 and “Piel de Sapo” may be the result of mutations in different genes. Several QTLs for fruit flesh firmness were also detected. Candidate genes putatively involved in ethylene regulation, biosynthesis and perception and cell wall degradation were mapped and some colocations with QTLs were observed. These results may provide additional data towards understanding of non-climacteric ripening in melon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Altschul SF, Gish SF, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Ayub R, Guis M, BenAmor M, Gillot L, Roustan JP, Latché A, Bouzayen M, Pech JC (1996) Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits. Nat Biotechnol 14:862–866

    Article  CAS  Google Scholar 

  • Barry C, Giovanonni J (2006) Ripening inhibition in the tomato Green-ripe mutant results from ectopic expression of a novel protein which disrupts ethylene signal transduction. Proc Natl Acad Sci USA 103:7923–7928

    Article  PubMed  CAS  Google Scholar 

  • Brummell DA, Harpster MH (2001) Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol Biol 47:311–340

    Article  PubMed  CAS  Google Scholar 

  • Causse M, Saliba-Colombani V, Lecomte L, Duffé P, Rousselle P, Buret M (2002) QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits. J Exp Bot 53:2089–2098

    Article  PubMed  CAS  Google Scholar 

  • Chaïb J, Devaux M-F, Grotte M-G, Robini K, Causse M, Lahaye M, Marty I (2007) Physiological relationships among physical, sensory, and morphological attributes of texture in tomato fruits. J Exp Bot 58:1915–1925

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Dunnet CW (1955) A multiple comparison procedure for comparing several treatments with a control. J Am Stat Assn 50:1096–1121

    Article  Google Scholar 

  • Eduardo I, Arús P, Monforte AJ (2005) Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession PI 161375. Theor Appl Genet 6:1–10

    Google Scholar 

  • Eduardo I, Obando J, Martínez JA, Alarcón AL, Arús P, Álvarez JM, van der Knaap E, Fernández-Trujillo JP, Monforte AJ (2007) Estimating the genetic architecture of fruit quality traits in melon (Cucumis melo L.) using a genomic library of near-isogenic lines. J Am Soc Hortic Sci 132:80–89

    Google Scholar 

  • Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162

    PubMed  CAS  Google Scholar 

  • Fernández-Trujillo JP, Obando J, Martínez JA, Alarcón A, Eduardo I, Arús P, Monforte AJ (2005) Quality management of experiments with a collection of near-isogenic lines of melon. In: Atienza J, Rabasseda J (eds). Proceedings of third virtual Iberoamerican Congress of laboratory quality management. III IBEROLAB, Madrid, pp 149–158

    Google Scholar 

  • Fernández-Silva I, Blanca J, Picó MB, Nuez F, Arús P, Monforte AJ (2006) Mapeo de marcadores microsatélites a partir de librerías de ESTs de melón (Cucumis melo) mediante genotipado selectivo. Actas de Horticultura 45:109–110

    Google Scholar 

  • Garcia-Mas J, Oliver M, Gómez H, de Vicente MC (2000) AFLP, RAPD and RFLP markers to measure genetic diversity in melon. Theor Appl Genet 101:860–864

    Article  CAS  Google Scholar 

  • Giovannoni JJ (2007) Fruit ripening mutants yield insights into ripening control. Curr Opin Plant Biol 10:1–7

    Article  CAS  Google Scholar 

  • Gonzalez-Ibeas D, Blanca J, Roig C, González-To M, Picó B, Truniger V, Gómez P, Deleu W, Caño-Delgado A, Arús P, Nuez F, Garcia-Mas J, Puigdomènech P, Aranda MA (2007) MELOGEN: an EST database for melon functional genomics. BMC Genomics 8:306

    Article  PubMed  CAS  Google Scholar 

  • Gonzalo MJ, Oliver M, Garcia-Mas J, Monfort A, Dolcet-Sanjuan R, Katzir N, Arús P, Monforte AJ (2005) Simple-sequence repeat (SSR) markers used in merging linkage maps of melon (Cucumis melo L.). Theor Appl Genet 110:802–811

    Article  PubMed  CAS  Google Scholar 

  • Guis M, Botondi R, Ben Amor M, Ayub R, Bouzayen M, Pech JC, Latche A (1997) Ripening-associated biochemical traits of cantaloupe Charentais melons expressing antisense ACC oxidase transgene. J Am Soc Hortic Sci 122:748–751

    CAS  Google Scholar 

  • Hadfield KA, Rose JK, Yaver DS, Berka RM, Bennett AB (1998) Polygalacturonase gene expression in ripe melon fruit supports a role for polygalacturonase in ripening-associated pectin disassembly. Plant Physiol 117:363–373

    Article  PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Harker FR, Redgwell RJ, Hallett IC, Murray SH, Carter G (1997) Texture of fresh fruit. Hortic Rev 20:121–224

    Google Scholar 

  • Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbott AG, Arus P (2006) Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map. Genetics 171:1305–1309

    Article  CAS  Google Scholar 

  • Ishiki Y, Oda A, Yaegashi Y, Orihara Y, Arai T, Hirabayashi T, Nakagawa H, Sato T (2000) Cloning of an auxin-responsive 1-aminocyclopropane-1-carboxylate synthase gene (CMe-ACS2) from melon and the expression of ACS genes in etiolated melon seedlings and melon fruits. Asian J Plant Sci 159:173–181

    CAS  Google Scholar 

  • Kader AA (2000) Methods of gas mixing, sampling and analysis. In: Kader AA (ed) Postharvest technology of horticultural crops. Pub no 3311. Division of agriculture and natural resources, 3a edn. University of California, pp 145–148

  • Lasserre E, Bouquin T, Hernández JA, Bull J, Pech JC, Balague C (1996) Structure and expression of three genes encoding ACC oxidase homologs from melon (Cucumis melo L.). Mol Gen Genet 251:81–90

    PubMed  CAS  Google Scholar 

  • Liebhard R, Kellerhals M, Pfammatter W, Jertmini M, Gessler C (2003) Mapping quantitative physiological traits in apple (Malus x domestica Borkh.). Plant Mol Biol 52:511–526

    Article  PubMed  CAS  Google Scholar 

  • Lin YT, Pitt RE (1986) Rheology of apple and potato tissue as affected by cell turgor pressure. J Text Stud 17:291–313

    Article  Google Scholar 

  • Manning K, Tor M, Poole M, Hong Y, Thompson A, King G, Giovannoni J, Seymour G (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:949–952

    Article  CAS  Google Scholar 

  • Miki T, Yamamoto M, Nakagawa H, Ogura N, Mori H, Imaseki H, Sato T (1995) Nucleotide sequence of a cDNA for 1-aminocyclopropane-1-carboxylate synthase from melon fruits. Plant Physiol 107:297–298

    Article  PubMed  CAS  Google Scholar 

  • Mizuno S, Hirasawa Y, Sonoda M, Nakagawa H, Sato T (2006) Isolation and characterization of three DREB/ERF-type transcription factors from melon (Cucumis melo). Plant Sci 170:1156–1163

    Article  CAS  Google Scholar 

  • Monforte AJ, Oliver M, Gonzalo MJ, Álvarez JM, Dolcet-Sanjuan R, Arús P (2004) Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet 108:750–758

    Article  PubMed  CAS  Google Scholar 

  • Moore S, Vrebalob J, Giovannoni J (2002) Use of genomic tools to isolate key ripening genes and analyse fruit maturation in tomato. J Exp Bot 53:2023–2030

    Article  PubMed  CAS  Google Scholar 

  • Morales M, Roig E, Monforte AJ, Arus P, Garcia-Mas J (2004) Single-nucleotide polymorphisms detected in expressed sequence tags of melon (Cucumis melo L.). Genome 47:352–360

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama K, Guis M, Rose JKC, Kubo Y, Bennett KA, Wangjin L, Kato K, Ushijima K, Inaba A, Bouzayen M, Latche A, Pech JC, Bennett AB (2007) Ethylene regulation of fruit softening and cell wall disassembly in Charentais melon. J Exp Bot 58:1281–1290

    Article  PubMed  CAS  Google Scholar 

  • Obando J, Fernández-Trujillo JP, Martínez JA, Alarcón AL, Eduardo I, Arús P, Monforte AJ (2007) Identification of melon fruit quality quantitative trait loci using near-isogenic lines. J Am Soc Hortic Sci (in press)

  • Oliver M, Garcia-Mas J, Cardus M, Pueyo N, Lopez-Sese AL, Arroyo M, Gomez-Paniagua H, Arus P, de Vicente MC (2001) Construction of a reference linkage map for melon. Genome 44:836–845

    Article  PubMed  CAS  Google Scholar 

  • Périn C, Gómez-Jiménez M, Hagen L, Dogimont C, Pech JC, Latché A, Pitrat M, Leliévre JM (2002) Molecular and genetic characterization of a non-climacteric phenotype in melon reveals two loci conferring altered ethylene response in fruit. Plant Physiol 129:300–309

    Article  PubMed  CAS  Google Scholar 

  • Rose JKC, Catalá C, Gonzalez-Carranza ZH, Roberts J (2003) Plant cell wall disassembly. In: Rose JKC (ed). The plant cell wall: annual plant reviews series, vol 8. Blackwell Publishing Ltd, Oxford, pp 264–324

    Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Meth Mol Biol 132:365–386

    CAS  Google Scholar 

  • Saliba-Colombani V, Causse M, Langlois D, Philouze J, Buret M (2001) Genetic analysis of organoleptic quality in fresh market tomato. 1. Mapping QTLs for physical and chemical traits. Theor Appl Genet 102:259–272

    Article  CAS  Google Scholar 

  • Sato-Nara K, Yuhashi KI, Higashi K, Hosoya K, Kubota M, Ezura H (1999) Stage- and tissue-specific expression of ethylene receptor homolog genes during fruit development in muskmelon. Plant Physiol 120:321–330

    Article  PubMed  CAS  Google Scholar 

  • Shackel KA, Greve C, Labavitch JM, Ahmadi H (1991) Cell turgor changes associated with ripening in tomato pericarp tissue. Plant Physiol 97:814–816

    Article  PubMed  CAS  Google Scholar 

  • Shiomi S, Yamamoto M, Nakamura R, Inaba A (1999) Expression of ACC synthase and ACC oxidase genes in melons harvested at different stages of maturity. J Japan Soc Hortic Sci 68:10–17

    Article  CAS  Google Scholar 

  • Solano R, Stepanova A, Chao Q, Ecker JR (2006) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12:3703–3714

    Article  Google Scholar 

  • van Leeuwen H, Monfort A, Zhang HB, Puigdomenech P (2003) Identification and characterisation of a melon genomic region containing a resistance gene cluster from a constructed BAC library. Microcolinearity between Cucumis melo and Arabidopsis thaliana. Plant Mol Biol 51:703–718

    Article  PubMed  Google Scholar 

  • Vicente AR, Saladié M, Rose JKC, Labavitch JM (2007) The linkage between cell wall metabolism and fruit softening: looking to the future. J Sci Food Agric 87:1435–1448

    Article  CAS  Google Scholar 

  • Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296:343–346

    Article  PubMed  CAS  Google Scholar 

  • Yamagami T, Tsuchisaka A, Yamada K, Haddon WF, Harden LA, Theologis AJ (2003) Biochemichal diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. Biol Chem 278:49102–49112

    Article  CAS  Google Scholar 

  • Yamasaki S, Fujii N, Takahashi H (2000) The ethylene-regulated expression of CS-ETR2 and CS-ERS genes in cucumber plants and their possible involvement with sex expression in flowers. Plant Cell Physiol 41:608–616

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Montserrat Saladié for critically reading the manuscript. This work was funded by grants AGL2003-09175-C02-01 and AGL2003-09175-C02-02 from the Spanish “Ministerio de Educación y Ciencia” (MEC). EM was supported by an AGAUR fellowship (Generalitat de Catalunya). JO was supported by a MAE-AECI fellowship from the Spanish Ministry of Foreigner Affairs. NDS was supported by two consecutive fellowships from FPI (Fundación Séneca de la Región de Murcia) and FPU (MEC AP2006-01565). We are indebted to Michel Pitrat (INRA, Montfavet, France) for the “Védrantais” seeds; to Fuensanta García, Claudia Miranda and María José Ferrer for technical assistance; to Plácido Varó and his team (CIFEA-Torre Pacheco, Consejería de Agricultura de la Región de Murcia) and Antoni Ortigosa for crop management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordi Garcia-Mas.

Additional information

Communicated by I. Paran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno, E., Obando, J.M., Dos-Santos, N. et al. Candidate genes and QTLs for fruit ripening and softening in melon. Theor Appl Genet 116, 589–602 (2008). https://doi.org/10.1007/s00122-007-0694-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-007-0694-y

Keywords

Navigation