Skip to main content
Log in

Identification of QTL and association of a phytoene synthase gene with endosperm colour in durum wheat

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The yellow colour of durum wheat (Triticum turgidum L. var durum) semolina is due in part to the presence of carotenoid pigments found in the endosperm and is an important end-use quality trait. We hypothesized that variation in the genes coding for phytoene synthase (Psy), a critical enzyme in carotenoid biosynthesis, may partially explain the phenotypic variation in endosperm colour observed among durum cultivars. Using rice sequence information, primers were designed to PCR clone and sequence the Psy genes from Kofa (high colour) and W9262-260D3 (medium colour) durum cultivars. Sequencing confirmed the presence of four Psy genes in each parent, corresponding to a two member gene family designated as Psy1-1, Psy1-2 and Psy2-1 and Psy2-2. A genetic map was constructed using 155 F1-derived doubled haploid lines from the cross W9262-260D3/Kofa with 194 simple sequence repeat and DArT® markers. Using Psy1-1 and Psy2-1 allele-specific markers and chromosome mapping, the Psy1 and Psy2 genes were located to the group 7 and 5 chromosomes, respectively. Four quantitative trait loci (QTL) underlying phenotypic variation in endosperm colour were identified on chromosomes 2A, 4B, 6B, and 7B. The Psy1-1 locus co-segregated with the 7B QTL, demonstrating an association of this gene with phenotypic variation for endosperm colour. This work is the first report of mapping Psy genes and supports the role of Psy1-1 in elevated levels of endosperm colour in durum wheat. This gene is a target for the further development of a molecular marker to enhance selection for endosperm colour in durum wheat breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AACC (American Association for Cereal Chemistry) (2000). Approved methods of the AACC-method, 10th edn. St. Paul, Minnesota, pp 14–50

  • Albrecht M, Klein A, Hugueney P, Sandmann G, Kuntz M (1995) Molecular cloning and functional expression in E. coli of a novel plant enzyme mediating zeta-carotene desaturation. FEBS Lett 372:199–202

    Article  PubMed  CAS  Google Scholar 

  • Alvarez JB, Martin LM, Martin A (1999) Genetic variation for carotenoid pigment content in the amphiploid Hordeum chilense X Triticum turgidum conv. durum. Plant Breeding 118:187–189

  • Bartley GE, Scolnik PA, Beyer P (1999) Two Arabidopsis thaliana carotene desaturases, phytoene desaturase and zeta-carotene desaturase, expressed in Escherichia coli, catalyze a poly-cis pathway to yield pro-lycopene. Eur J Biochem 259:396–403

    Article  PubMed  CAS  Google Scholar 

  • Borrelli GM, Troccolo A, Di Fonzo N, Fares C (1999) Durum wheat lipoxygenase activity and other quality parameters that affect pasta colour. Cereal Chem 76:335–340

    CAS  Google Scholar 

  • Brenna OV, Berardo N (2004) Application of near-infrared reflectance spectroscopy (NIRS) to the evaluation of carotenoids content in maize. J Agric Food Chem 52:5577–5582

    PubMed  CAS  Google Scholar 

  • Cenci A, Somma S, Chantret N, Dubcovsky J, Blanco A (2004) PCR identification of durum wheat BAC clones containing genes coding for carotenoid biosynthesis enzymes and their chromosome localization. Genome 47:911–917

    Article  PubMed  CAS  Google Scholar 

  • Cervigni G, Zhang W, Picca A, Carrera A, Helguera M, Manthey F, Miranda R, Dubcovsky J, and Echenique V (2005) QTL Mapping for LOX Activity and Quality Traits in Durum Wheat. In: Proceedings 7th international wheat conference. SAGPyA/INTA. Mar del Plata, Argentina 27 November–2 December

  • Clarke FR, Clarke JM, McCaig TN, Knox RE, DePauw RM (2006) Inheritance of yellow pigment in concentration in four durum wheat crosses. Can J Plant Sci 86:133–141

    Google Scholar 

  • Cronn R, Cedroni M, Haselkorn T, Grover C, Wendel JF (2002) PCR-mediated recombination in amplification products derived from polyploid cotton. Theor Appl Genet 104: 482–489

    Google Scholar 

  • Cunningham FX, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 49:557–583

    Article  PubMed  CAS  Google Scholar 

  • Dexter JE and Marchylo BA (2000) Recent trends in durum wheat milling and pasta processing:impact on durum wheat quality requirements. In: Proceedings of the international workshop on durum wheat, semolina, and pasta quality:recent achievements and new trends. Institute National de la Recherche Agronomique. Montpellier, France 27 November

  • van Deynze AE, Nelson JC, Yglesias ES, Harrington SE, Braga DP, McCouch SR, Sorrells ME (1995) Comparative mapping in grasses. Wheat relationships. Mol Gen Genet 248:744–754

    Article  PubMed  Google Scholar 

  • Edwards NM, Dexter, JE, Sobering DC, Williams PC (1996). Whole grain prediction of durum wheat yellow pigment by visible-NIR reflectance spectroscopy. In: Proceedings of the 7th international conference on near-infrared spectroscopy, Montreal, Canada, August 1995

  • Elouafi I, Nachit MM (2004) A genetic linkage map of the Durum × Triticum dicoccoides backcross population based on SSRs and AFLP markers, and QTL analysis for milling traits. Theor Appl Genet 108:401–413

    Article  PubMed  CAS  Google Scholar 

  • Elouafi I, Nachit MM, Martin LM (2001) Identification of a microsatellite on chromosome 7B showing a strong linkage with yellow pigment in durum wheat (Triticum turgidum L. var. durum). Hereditas 135:255–261

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence and phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Francki M, Carter M, Ryan K, Hunter A, Bellgard M, Appels R (2004) Comparative organization of wheat homoeologous group 3S and 7L using wheat–rice synteny and identification of potential markers for genes controlling xanthophyll content in wheat. Funct Integr Genomics 4:118–130

    Article  PubMed  CAS  Google Scholar 

  • Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265

    Article  PubMed  CAS  Google Scholar 

  • Gallagher CE, Matthews PD, Li F, Wurtzel ET (2004) Gene duplication in the carotenoid biosynthetic pathway preceded evolution of the grasses. Plant Physiol 135:1776–1783

    Article  PubMed  CAS  Google Scholar 

  • Hentschel V, Kranl K, Hollmann J, Lindhauer MG, Bohm V, Bitsch R (2002) Spectrophotometric determination of yellow pigment content and evaluation of carotenoids by high-performance liquid chromatography in durum wheat grain. J Agric Food Chem 50:6663–6668

    Article  PubMed  CAS  Google Scholar 

  • Hessler TG, Thomson MJ, Benscher D, Nachit MM, Sorrells ME (2002) Association of a lipoxygenase locus, Lpx-B1, with variation in lipoxygenase activity in durum wheat seeds. Crop Sci 42:1695–1700

    Article  CAS  Google Scholar 

  • Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455

    PubMed  CAS  Google Scholar 

  • Johnston RA, Quick JS, Hammond JJ (1983) Inheritance of semolina colour in six durum wheat crosses. Crop Sci 23:607–610

    Article  Google Scholar 

  • Joppa LR, Williams N (1988) Langdon durum disomic substitution lines and aneuploid analysis in tetraploid wheat. Genome 30:222–228

    Google Scholar 

  • Knapp SJ (2001) Mapping quantitative trait loci. In: Phillips RI, Vasil IK (eds) DNA-based markers in plants. Kluwer, Netherlands, pp 59–99

    Google Scholar 

  • Korzun V, Roder MS, Wendehake K, Pasqualone A, Lotti C, Ganal MW, Blanco A (1999) Integration of dinucleotide microsatellites from hexaploid bread wheat into a genetic linkage map of durum wheat. Theor Appl Genet 98: 1202–1207

    Google Scholar 

  • Kuchel H, Langridge P, Mosionek L, Williams K, Jefferies SP (2006) The genetic control of milling yield, dough rheology and baking quality of wheat. Theor Appl Genet 112:1487–1495

    Article  PubMed  CAS  Google Scholar 

  • La Rota M, Sorrells ME (2004) Comparative DNA sequence analysis of mapped wheat ESTs reveals the complexity of genome relationships between rice and wheat. Funct Integr Genomics 4:34–46

    Article  PubMed  CAS  Google Scholar 

  • Lindgren LO, Stalberg KG, Hoglund AS (2003) Seed-specific overexpression of an endogenous arabidopsis phytoene synthase gene results in delayed germination and increased levels of carotenoids, chlorophyll, and abscisic acid. Plant Physiol 132:779–785

    Article  PubMed  CAS  Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD (1996) SAS system for mixed models. SAS Institute Inc, Cary, p 633

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer associates Inc, Sunderland, p 980

  • Manna F, Borrelli GM, Massardo D, Wolf K, Alifano P, Del Giudice L, Di Fonzo N (1998) Differential expression of lipoxygenase genes among durum wheat cultivars. Cereal Res Commun 26:23–30

    CAS  Google Scholar 

  • Mares D, Campbell A (2001) Mapping components of flour and noodle colour in Australian wheat. Aust J Agric Res 52:1297–1309

    Article  CAS  Google Scholar 

  • Matsuo RR, Dexter JE (1980) Relationship between some durum wheat physical characteristics and semolina milling properties. Can J Plant Sci 60:49–53

    Article  Google Scholar 

  • Matthews PD, Luo R, Wurtzel ET (2003) Maize phytoene desaturase and zeta-carotene desaturase catalyse a poly-Z desaturation pathway: implications for genetic engineering of carotenoid content among cereal crops. J Exp Bot 54:2215–2230

    Article  PubMed  CAS  Google Scholar 

  • McCaig TN, McLeod JG, Clarke JM, DePauw RM (1992) Measurement of durum pigment with a near-infrared instrument operating in the visible range. Cereal Chem 69:671–672

    CAS  Google Scholar 

  • Nachit MM, Elouafi I, Pagnotta A, El Saleh A, Iacono E, Labhilili M, Asbati A, Azrak M, Hazzam H, Benscher D, Khairallah M, Ribaut JM, Tanzarella OA, Porceddu E, Sorrells ME (2001) Molecular linkage map for an intraspecific recombinant inbred population of durum wheat (Triticum turgidum L. var. durum). Theor Appl Genet 102:177–186

    Article  CAS  Google Scholar 

  • van Ooijen JW (1999) LOD significance thresholds for QTL analysis in experimental populations of diploid species. Heredity 83:613–624

    Article  PubMed  Google Scholar 

  • van Ooijen JW (2004) Software for the mapping of quantitative traits in experimental populations. Kyama BV, Wageningen

    Google Scholar 

  • van Ooijen JW, Voorips RE (2004) JoinMap Version 3.0, Software for the calculation of genetic linkage maps. Kyazma BV, Wageningen

    Google Scholar 

  • Palaisa KA, Morgante M, Williams M, Rafalski A (2003) Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell 15:1795–1806

    Article  PubMed  CAS  Google Scholar 

  • Panfili G, Fratianni A, Irano M (2004) Improved normal-phase high-performance liquid chromatography procedure for the determination of carotenoids in cereals. J Agric Food Chem 52:6373–6377

    Article  PubMed  CAS  Google Scholar 

  • Parker GD, Chalmers KJ, Rathjen AJ, Langridge P (1998) Mapping loci associated with flour colour in wheat (Triticum aestivum L.). Theor Appl Genet 97:238–245

    Article  CAS  Google Scholar 

  • Pestsova E, Ganal MW, Roder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697

    Article  PubMed  CAS  Google Scholar 

  • Roder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labelling of PCR fragments. Nat Biotechnol 18:233–234

    Article  PubMed  CAS  Google Scholar 

  • Sears ER (1966) Nullisomic–tetrasomic combinations in hexaploid wheat. In: Riley R, Lewis KR (eds) Chromosome manipulation and plant genetics. Oliver and Boyd, Edinburgh, pp 29–45

    Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    Article  PubMed  CAS  Google Scholar 

  • Tinker NA, Mather DE (1995) MQTL: software for simplified composite interval mapping of QTL in multiple environments. J Agric Genomics 1: (http://www.ncgr.org/research/jag/papers95/paper295/indexp295.html)

  • Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101:9915–9920

    Article  PubMed  CAS  Google Scholar 

  • Wittenberg AH, Lee TV, Cayla C, Kilian A, Visser RG, Schouten HJ (2005) Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana. Mol Genet Genomics 274:30–39

    Article  PubMed  CAS  Google Scholar 

  • Wong JC, Lambert RJ, Wurtzel ET, Rocheford TR (2004) QTL and candidate genes phytoene synthase and zeta-carotene desaturase associated with the accumulation of carotenoids in maize. Theor Appl Genet 108:349–359

    Article  PubMed  CAS  Google Scholar 

  • Xia L, Peng K, Yang S, Wenzl P, de Vicente MC, Fregene M, Kilian A (2005) DArT for high-throughput genotyping of Cassava (Manihot esculenta) and its wild relatives. Theor Appl Genet 110:1092–1098

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the technical assistance of A. Tomiko, L. Yaworsky, B. Meyer, Y. Suprayogi, J. Ross, M. Olfert, L. Oakman, R. Ferguson and O. Thompson, and funding of this work by the Western Grains Research Foundation (WGRF), National Science and Engineering Research Council (NSERC), and the Agriculture and Agri-Food Canada Matching Investment Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Pozniak.

Additional information

Communicated by R. Waugh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pozniak, C.J., Knox, R.E., Clarke, F.R. et al. Identification of QTL and association of a phytoene synthase gene with endosperm colour in durum wheat. Theor Appl Genet 114, 525–537 (2007). https://doi.org/10.1007/s00122-006-0453-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-006-0453-5

Keywords

Navigation