Skip to main content
Log in

Comparative sequence and genetic analyses of asparagus BACs reveal no microsynteny with onion or rice

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The Poales (includes the grasses) and Asparagales [includes onion (Allium cepa L.) and asparagus (Asparagus officinalis L.)] are the two most economically important monocot orders. The Poales are a member of the commelinoid monocots, a group of orders sister to the Asparagales. Comparative genomic analyses have revealed a high degree of synteny among the grasses; however, it is not known if this synteny extends to other major monocot groups such as the Asparagales. Although we previously reported no evidence for synteny at the recombinational level between onion and rice, microsynteny may exist across shorter genomic regions in the grasses and Asparagales. We sequenced nine asparagus BACs to reveal physically linked genic-like sequences and determined their most similar positions in the onion and rice genomes. Four of the asparagus BACs were selected using molecular markers tightly linked to the sex-determining M locus on chromosome 5 of asparagus. These BACs possessed only two putative coding regions and had long tracts of degenerated retroviral elements and transposons. Five asparagus BACs were selected after hybridization of three onion cDNAs that mapped to three different onion chromosomes. Genic-like sequences that were physically linked on the cDNA-selected BACs or genetically linked on the M-linked BACs showed significant similarities (e < −20) to expressed sequences on different rice chromosomes, revealing no evidence for microsynteny between asparagus and rice across these regions. Genic-like sequences that were linked in asparagus were used to identify highly similar (e < −20) expressed sequence tags (ESTs) of onion. These onion ESTs mapped to different onion chromosomes and no relationship was observed between physical or genetic linkages in asparagus and genetic linkages in onion. These results further indicate that synteny among grass genomes does not extend to a sister order in the monocots and that asparagus may not be an appropriate smaller genome model for plants in the Asparagales with enormous nuclear genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahn S, Tanksley S (1993) Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci USA 90:7980–7984

    Article  PubMed  CAS  Google Scholar 

  • Ahn S, Anderson JA, Sorrells ME, Tanksley SD (1993) Homoeologous relationships of rice, wheat and maize chromosomes. Mol Gen Genet 241:483–490

    Article  PubMed  CAS  Google Scholar 

  • APG II [Bremer B, Bremer K, Chase MW, Reveal JL, Soltis DE, Soltis PS, Stevens PF, Anderberg AA, Fay MF, Goldblatt P, Judd WS, Kallersjo M, Karehed J, Kron KA, Lundberg J, Nickrent DL, Olmstead RG, Oxelman B, Pires JC, Rodman JE, Rudall PJ, Savolainen V, Sytsma KJ, van der Bank M, Wurdack K, Xiang JQY, Zmarzty S] (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141:399–436

    Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Reporter 9:208–218

    Article  CAS  Google Scholar 

  • Bark OH, Corgan J, Havey MJ (1994) RFLP analysis of progeny from an interspecific hybrid between Allium fistulosum and Allium cepa. J Am Soc Hortic Sci 119:1046–1049

    Google Scholar 

  • Bennetzen JL (2000) Comparative sequence analysis of plant nuclear genes: microcolinearity and its many exceptions. Plant Cell 12:1021–1029

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL, Ramakrishna W (2002) Numerous small rearrangements of gene content, order and orientation differentiate grass genomes. Plant Mol Biol 48:821–827

    Article  PubMed  CAS  Google Scholar 

  • Binelli G, Ginafranceschi L, Pe M, Taramino G, Busso C, Stenhouse J, Ottaviano E (1992) Similarity of maize and sorghum genomes as revealed by maize RFLP probes. Theor Appl Genet 84:10–16

    Article  CAS  Google Scholar 

  • Bowers JE, Abbey C, Anderson S, Chang C, Draye X, Hoppe AH, Jessup R, Lemke C, Lennington J, Li Z, Lin YR, Liu SC, Luo L, Marler BS, Ming R, Mitchell SE, Qiang D, Reischmann K, Schulze SR, Skinner DN, Wang YW, Kresovich S, Schertz KF, Paterson AH (2003) A high-density genetic recombination map of sequence-tagged sites for sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses. Genetics 165:367–386

    PubMed  CAS  Google Scholar 

  • Chase M, Duvall M, Hills H, Conran J, Cox A, Eguiarte L, Hatwell K, Fay M, Caddick R, Cameron K, Hoot S (1995) Molecular phylogenetics of Lilianae. In: Rudall P, Crib P, Culter D, Humphries C (eds) Monocotyledons: systematics and evolution. Royal Botanic Gardens, Kew, pp 109–137

    Google Scholar 

  • Chase MW, Soltis DE, Soltis PS, Rudall PJ, Fay MF, Hahn WH, Sullivan S, Joseph J, Molvray M, Kores PJ, Givnish TJ, Sytsma KJ, Pires JC (2000) Higher-level systematics of the monocotyledons: an assessment of current knowledge and a new classification. In: Wilson KL, Morrison S (eds) Monocots: systematics and evolution. CSIRO, Melbourne, pp 3–16

    Google Scholar 

  • Chen M, SanMiquel P, DeOliviera A, Woo S, Zhang H, Wing R, Bennetzen J (1997) Microcolinearity in sh2-homologous regions of maize, rice, and sorghum genomes. Proc Natl Acad Sci USA 94:3431–3435

    Article  PubMed  CAS  Google Scholar 

  • Chou HH, Holmes MH (2001) DNA sequence quality trimming and vector removal. Bioinformatics 17:1093–1104

    Article  PubMed  CAS  Google Scholar 

  • Devos KM, Gale MD (2000) Genome relationships: the grass model in current research. Plant Cell 12:637–646

    Article  PubMed  CAS  Google Scholar 

  • Devos KM, Chao S, Li QY (1994) Relationship between chromosome 9 of maize and wheat homeologous group 7 chromosomes. Genetics 138:1287–1292

    PubMed  CAS  Google Scholar 

  • Do S, Suzuki G, Mukai Y (2003) Genomic organization of a novel root alliinase gene, ALL1, in onion. Gene 325:17–24

    Article  CAS  Google Scholar 

  • Dubcovsky J, Ramakrishna W, SanMiguel PJ, Busso CS, Yan L, Shiloff BA, Bennetzen JL (2001) Comparative sequence analysis of colinear barley and rice bacterial artificial chromosomes. Plant Physiol 125:1342–1353

    Article  PubMed  CAS  Google Scholar 

  • Dunford RP, Kurata N, Laurie DA, Money TA, Minobe Y, Moore G (1995) Conservation of fine-scale DNA marker order in the genomes of rice and the Triticeae. Nucleic Acids Res 23:2724–2728

    PubMed  CAS  Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194

    PubMed  CAS  Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185

    PubMed  CAS  Google Scholar 

  • FAO (2003) World production and trade statistics. http://www.apps.fao.org/

  • Fu H, Dooner HK (2002) Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci USA 99:9573–9578

    PubMed  CAS  Google Scholar 

  • Gokce AF, McCallum J, Sato Y, Havey MJ (2002) Molecular tagging of the Ms locus in onion. J Am Soc Hortic Sci 127:576–582

    CAS  Google Scholar 

  • Ilic K, SanMiguel PJ, Bennetzen JL (2003) A complex history of rearrangement in an orthologous region of the maize, sorghum, and rice genomes. Proc Natl Acad Sci USA 100:12265–12270

    Article  PubMed  CAS  Google Scholar 

  • Ishizaki K, Shimizu-Ueda Y, Okada S, Yamamoto M, Fujisawa M, Yamato KT, Fukuzawa H, Ohyama K (2002) Multicopy genes uniquely amplified in the Y chromosome-specific repeats of the liverwort Marchantia polymorpha. Nucleic Acids Res 30:4675–4681

    Article  PubMed  CAS  Google Scholar 

  • Jamsari A, Nitz I, Reamon-Büttner SM, Jung C (2004) BAC-derived diagnostic markers for sex determination in asparagus. Theor Appl Genet 108:1140–1146

    Article  PubMed  CAS  Google Scholar 

  • Jansson T, Bremer K (2005) The age of major monocot groups inferred from 800 + rbcL sequences. Bot J Linn Soc 146:395–398

    Google Scholar 

  • Keller B, Feuillet C (2000) Colinearity and gene density in grass genomes. Trends Plant Sci 5:246–251

    Article  PubMed  CAS  Google Scholar 

  • King JJ, Bradeen JM, Bark O, McCallum JA, Havey MJ (1998) A low-density genetic map of onion reveals a role for tandem duplication in the evolution of an extremely large diploid genome. Theor Appl Genet 96:52–62

    Article  CAS  Google Scholar 

  • Kuhl JC, Cheung F, Yuan Q, Martin W, Zewdie Y, McCallum J, Catanach A, Rutherford P, Sink KC, Jenderek M, Prince JP, Town CD, Havey MJ (2004) A unique set of 11,008 onion (Allium cepa) ESTs reveals expressed sequence and genomic differences between monocot orders Asparagales and Poales. Plant Cell 16:114–125

    Article  PubMed  Google Scholar 

  • Kuhl JC, Havey MJ, Cheung F, Yuan Q, Leebens-Mack J, Town CD, Sink KC (2005) Comparative genomic analyses of the genus Asparagus. Genome 48:1052–1060

    Article  PubMed  CAS  Google Scholar 

  • Leitch IJ, Soltis DE, Soltis PS, Bennett MD (2005) Evolution of DNA amounts across land plants (Embryophyta). Ann Bot 95:207–217

    Article  PubMed  CAS  Google Scholar 

  • Lengerova M, Kejnovsky E, Hobza R, Macas J, Grant SR, Vyskot B (2004) Multicolor FISH mapping of the dioecious model plant, Silene latifolia. Theor Appl Genet 108:1193–1199

    Article  PubMed  CAS  Google Scholar 

  • Li W, Gill BS (2002) The colinearity of the Sh2/A1 orthologous region in rice, sorghum and maize is interrupted and accompanied by genome expansion in the triticeae. Genetics 160:1153–1162

    PubMed  CAS  Google Scholar 

  • Liu Z, Moore PH, Ma H, Ackerman CM, Ragiba M, Yu Q, Pearl HM, Kim MS, Charlton JW, Stiles JI, Zee FT, Paterson AH, Ming R (2004) A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427:348–352

    Article  PubMed  CAS  Google Scholar 

  • Löptien H (1979) Identification of the sex chromosome pair in asparagus (Asparagus officinalis L.). Z Pflanzen 82:162–173

    Google Scholar 

  • Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci USA 101:12404–12410

    Article  PubMed  CAS  Google Scholar 

  • Manly KF, Cudmore RH Jr, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932

    Article  PubMed  CAS  Google Scholar 

  • Martin W, McCallum J, Shigyo M, Jakse J, Kuhl JC, Yamane N, Sink KC, Town CD, Havey MJ (2005) Genetic mapping of expressed sequences in onion reveal a collinear region with garlic, but in silico comparisons show scant collinearity with rice. Mol Genet Genomics 274:197–204

    Article  PubMed  CAS  Google Scholar 

  • Maughan P, Saghai-Maroof M, Buss G (1996) Molecular-marker analysis of seed weight: genomic location, gene action, and evidence for orthologous evolution among three legume species. Theor Appl Genet 93:574–579

    CAS  Google Scholar 

  • Okada S, Sone T, Fujisawa M, Nakayama S, Takenaka M, Ishizaki K, Kono K, Shimizu-Ueda Y, Hanajiri T, Yamato K T, Fukuzawa H, Brennicke A, Ohyama K (2001) The Y chromosome in the liverwort Marchantia polymorpha has accumulated unique repeat sequences harboring a male-specific gene. Proc Natl Acad Sci USA 98:9454–9459

    Article  PubMed  CAS  Google Scholar 

  • Paterson A, Lan T, Reischmann K (1996) Toward a unified genetic map of higher plants, transcending the monocot-dicot divergence. Nat Genet 14:380–382

    Article  PubMed  CAS  Google Scholar 

  • Paterson A, Bowers JE, Burow MD, Draye X, Eisik CG, Jiang CX, Katsar CS, Land TH, Lin YR, Ing R, Wright RJ (2000) Comparative genomics of plant chromosomes. Plant Cell 12:1523–1539

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Peterson DG, Estill JC, Chapman BA (2003) Structure and evolution of cereal genomes. Curr Opin Genet Dev 13:644–650

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA 101:9903–9908

    Article  PubMed  CAS  Google Scholar 

  • Pop M, Kosack D, Salzberg S (2004) Hierarchical scaffolding with Bambus. Genome Res 14:149–159

    Article  PubMed  CAS  Google Scholar 

  • Pride DT (2000) SWAAP Version 1.0.0—sliding windows alignment analysis program: a tool for analyzing patterns of substitutions and similarity in multiple alignments. Distributed by the author at http://www.bacteriamuseum.org/SWAAP/SwaapPage.htm

  • Reamon-Büttner S, Schmidt T, Jung C (1999) AFLPs represent highly repetitive sequences in Asparagus officinalis L. Chromosome Res 7:297–304

    Article  PubMed  Google Scholar 

  • Sakamoto K, Ohmido N, Fukui K, Kamada H, Satoh S (2000) Site-specific accumulation of a LINE-like retrotransposon in a sex chromosome of the dioecious plant Cannabis sativa. Plant Mol Biol 44:723–732

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto K, Abe T, Matsuyama T, Yoshida S, Ohmido N, Fukui K, Satoh S (2005) RAPD markers encoding retrotransposable elements are linked to the male sex in Cannabis sativa L. Genome 48:931–936

    PubMed  CAS  Google Scholar 

  • SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, Bennetzen JL (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768

    Article  PubMed  CAS  Google Scholar 

  • Schwartz S, Elnitski L, Li M, Weirauch M, Riemer C, Smit N (2003) MultiPipMaker and supporting tools: alignments and analysis of multiple genomic DNA sequences. Nucleic Acids Res 31:3518–3524

    Article  PubMed  CAS  Google Scholar 

  • Shibata F, Hizume M, Kuroki Y (1999) Chromosome painting of Y chromosomes and isolation of a Y chromosome-specific repetitive sequence in the dioecious plant Rumex acetosa. Chromosoma 108:266–270

    Article  PubMed  CAS  Google Scholar 

  • Soderlund C, Humphrey S, Dunham A, French L (2000) Contigs built with fingerprints, markers, and FPC v4.7. Genome Res 10:1772–1787

    Article  PubMed  CAS  Google Scholar 

  • Song R, Llaca V, Messing J (2002) Mosaic organization of orthologous sequences in grass genomes. Genome Res 12:1549–1555

    Article  PubMed  CAS  Google Scholar 

  • Stack SM, Comings DE (1979) The chromosomes and DNA of Allium cepa. Chromosoma 70:161–181

    Article  CAS  Google Scholar 

  • Staden R (1996) The Staden sequence analysis package. Mol Biotech 5:233–241

    Article  CAS  Google Scholar 

  • Stajner N, Bohanec B, Javornik B (2002) Genetic variability of economically important Asparagus species as revealed by genome size analysis and rDNA ITS polymorphisms. Plant Sci 162:931–937

    Article  CAS  Google Scholar 

  • Tarchini R, Biddle P, Wineland R, Tingey S, Rafalski A (2000) The complete sequence of 340 kb of DNA around the rice Adh1–Adh2 region reveals interrupted colinearity with maize chromosome 4. Plant Cell 12:381–392

    Article  PubMed  CAS  Google Scholar 

  • Tatusova TA, Madden TL (1999) Blast 2 sequences—a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174:247–250

    Article  PubMed  CAS  Google Scholar 

  • Tikhonov A, SanMiquel P, Nakajima Y, Gorenstein N, Bennetzen J, Avramova Z (1999) Colinearity and its exceptions in orthologous adh regions of maize and sorghum. Proc Natl Acad Sci USA 96:7409–7441

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was completed in compliance with the current laws governing genetic experimentation in the United States and was supported by the Initiative for Future Agriculture and Food Systems Grant 2001-52100-11344 from the USDA Cooperative State Research, Education, and Extension Service; German Research Foundation DFG grant Ju 205/2-3; a Fulbright-Hayes Post-doctoral Fellowship to JJ; and a Boyscast Fellowship to AK.

Disclaimer: Names are necessary to report factually on available data; however, the US Department of Agriculture (USDA) neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Havey.

Additional information

Communicated by J. S. Heslop-Harrison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakše, J., Telgmann, A., Jung, C. et al. Comparative sequence and genetic analyses of asparagus BACs reveal no microsynteny with onion or rice. Theor Appl Genet 114, 31–39 (2006). https://doi.org/10.1007/s00122-006-0407-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-006-0407-y

Keywords

Navigation