Skip to main content

Advertisement

Log in

Genetic basis of barley caryopsis dormancy and seedling desiccation tolerance at the germination stage

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The genomic regions controlling caryopsis dormancy and seedling desiccation tolerance were identified using 152 F4 lines derived from a cross between Mona, a Swedish cultivar, and an Israeli xeric wild barley Hordeum spontaneum genotype collected at Wadi Qilt, Israel. Dormancy, the inability of a viable seed to germinate, and desiccation tolerance, the ability of the desiccated seedlings to revive after rehydration, were characterized by fitting the germination and revival data with growth curves, using three parameters: minimum, maximum, and slope of germination or revival rate derived by the least square method. The genetic map was constructed with 85 genetic markers (SSRs, AFLPs, STSs, and Dhn genes) using the multipoint-mapping algorithm. Quantitative trait loci (QTLs) mapping was conducted with the multiqtl package. Ten genomic regions were detected that affected the target traits, seven of which affected both dormancy and desiccation tolerance traits. Both the wild barley genotype and the Swedish cultivar contributed the favorite alleles for caryopsis dormancy, whereas seedling desiccation tolerance was attributed to alleles descending from the cultivar. The results indicate that some barley dormancy genes are lost during domestication and that dormancy QTLs are associated with abiotic stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen PS, Thorne ET, Gardner JS, White DB (2000) Is the barley endosperm a water reservoir for the embryo when germinating seeds are dried? Int J Plant Sci 161:195–201

    Article  PubMed  Google Scholar 

  • Ashby E, May V (1941) Physiological studies in drought resistance. I. Technique. Proc Linn Soc N S W 114:107–112

    Google Scholar 

  • Baskin CC, Baskin JM (1998) Seeds—ecology, biogeography, and evolution of dormancy and germination. Academic, San Diego

    Google Scholar 

  • Blondel J, Aronson J (1999) Biology and wildlife of the Mediterranean region. Oxford University Press, Oxford

    Google Scholar 

  • Cattivelli L, Baldi P, Crosatti C, Fonzo ND, Faccioli P, Grossi M, Mastrangelo MA, Pecchioni N, Stanca AM (2002) Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Mol Biol 48:649–665

    Article  CAS  PubMed  Google Scholar 

  • Chen GX, Krugman T, Fahima T, Zhang FC, Korol AB, Nevo E (2004) Differential patterns of germination and desiccation tolerance of mesic and xeric wild barley (Hordeum spontaneum) in Israel. J Arid Environ 56:95–105

    Article  Google Scholar 

  • Choi DW, Zhu B, Close TJ (1999) The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allelic types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv. Dicktoo. Theor Appl Genet 99:1234–1247

    Article  CAS  Google Scholar 

  • Edney MJ, Mather DE (2004) Quantitative trait loci affecting germination traits and malt friability in a two-rowed by six-rowed barley cross. J Cereal Sci 39:283–290

    Article  CAS  Google Scholar 

  • Evenari M, Gutterman Y (1976) Observations on the secondary succession of three plant communities in the Negev desert, Israel. I. Artemisietum herbae albae. In: Jacques R (ed) Hommage au Prof. P Chouard Etudes de Biologie Vegetale, C.N.R.S. Gif sur Yvette, Paris, pp 57–86

    Google Scholar 

  • Evenari M, Shanan L, Tadmor N (1971) The Negev, the challenge of a desert. Harvard University Press, Cambridge

    Google Scholar 

  • Gutterman Y (1993) Seed germination in desert plants. Adaptations of Desert Organisms. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Gutterman Y, Gozlan S (1998) Amounts of winter or summer rain engendering germination and “point of no return” of seedling desiccation tolerance, of Hordeum spontaneum local ecotypes in Israel. Plant Soil 204:223–234

    Article  CAS  Google Scholar 

  • Han F, Ullrich SE, Clancy JA, Jitkov V, Kilian A, Romagosa I (1996) Verification of barley seed dormancy loci via linked molecular markers. Theor Appl Genet 92:87–91

    Article  Google Scholar 

  • Kao CH, Zeng ZB, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216

    CAS  PubMed  Google Scholar 

  • Korol AB, Ronin YI, Itskovich AM, Peng J, Nevo E (2001) Enhanced efficiency of quantitative trait loci mapping analysis based on multivariate complexes of quantitative traits. Genetics 157:1789–1803

    CAS  PubMed  Google Scholar 

  • Larson S, Bryan G, Dyer W, Blake T (1996) Evaluating gene relationship to other traits. In: Noda K, Mares DJ (eds) Effects of a major barley seed dormancy QTL in reciprocal back. Pre-harvest sprouting in cereals 1995. Center for Academic Societies, Osaka, pp 157–163

  • Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol 49:199–222

    Article  CAS  PubMed  Google Scholar 

  • Lincoln S, Daly M, Lander E (1992) Constructing Genetic Maps with mapmaker/exp3.0. Whitehead Institute Technical Report, 3rd edn. Whitehead Institute, Cambridge, Mass.

    Google Scholar 

  • Mano Y, Takeda K (1997) Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.). Euphytica 94:263–272

    Article  Google Scholar 

  • Mester DI, Ronin YI, Hu Y, Peng J, Nevo E, Korol AB (2003) Efficient multipoint mapping: making use of dominant repulsion-phase markers. Theor Appl Genet 107:1102–1112

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Fahima T, Röder MS, Li YC, Dahan A, Grama A, Ronin YI, Korol AB, Nevo E (1999) Microsatellite tagging of stripe-rust resistance gene YrH52 derived from wild emmer wheat, Triticum dicoccoides, and suggestive negative crossover interference on chromosome 1B. Theor Appl Genet 98: 862–872

    Article  CAS  Google Scholar 

  • Prada D, Ullrich SE, Molina-Cano JL, Cistué L, Clancy JA, Romagosa I (2004) Genetic control of dormancy in a Triumph/Morex cross in barley. Theor Appl Genet 109:62–70

    Article  CAS  PubMed  Google Scholar 

  • Ramsay L, Macaulay M, Ivanissevich SD, MacLean K, Cardle L, Fuller J, Edwards KJ, Tuvesson S, Morgante M, Massarie A, Maestri E, Marmiroli N, Sjakste T, Ganalg M, Powell W, Waugh R (2000) A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005

    CAS  PubMed  Google Scholar 

  • Simpson GM (1990) Seed dormancy in grasses. Cambridge University Press, New York

    Google Scholar 

  • Snape JW, Sarma R, Quarrie SA, Fish L, Galiba G, Sutka J (2001) Mapping genes for flowering time and frost tolerance in cereals using precise genetic stocks. Euphytica 120:309–315

    Article  CAS  Google Scholar 

  • Takeda K (1996) Varietal variation and inheritance of seed dormancy in barley. In: Noda K, Mares DJ (eds) Proc 7th Int Symp Pre-harvest Sprouting Cereals. Center for Academic Societies of Japan, Osaka, pp 205–212

    Google Scholar 

  • Talbert LE, Blake NK, Chee PW, Blake TK, Magyar GM (1994) Evaluation of “sequence-tagged-site” PCR products as molecular markers in wheat. Theor Appl Genet 87:789–794

    CAS  Google Scholar 

  • Ullrich SE, Hayes PM, Dyer WE, Blake TK, Clancy JA (1993) Quantitative trait locus analysis of seed dormancy in “Steptoe” barley. In: Walker-Simmons MK, Ried JL (eds) Pre-harvest sprouting in cereals 1992. American Association of Cereal Chemists. St Paul, Minnesota, pp 136–145

    Google Scholar 

  • Ullrich SE, Han F, Blake TK, Oberthur LE, Dyer WE, Clancy JA (1995) Seed dormancy in barley: genetic resolution and relationship to other traits. In: Koda K. Mares DJ (eds) Pre-harvest sprouting in cereals 1995. Center for Academic Studies, Osaka, pp157–163

  • Verhoeven KJF, Biere A, Nevo E, van Damme JMM (2004) Can a genetic correlation with seed weight constrain adaptive evolution of seedling desiccation tolerance in wild barley? Int J Plant Sci 165:281–288

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407–4414

    CAS  PubMed  Google Scholar 

  • Zhang F, Gutterman Y, Krugman T, Fahima T, Nevo E (2002) Differences in primary and seedling revival ability for some Hordeum spontaneum genotypes of Israel. Isr J Plant Sci 50:271–276

    Article  Google Scholar 

  • Wu R, Ma CX, Lin M, Casella G (2004) A general framework for analyzing the genetic architecture of developmental characteristics. Genetics 166:1541–1551

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. AID Cooperative Development Research Program (grant TA-MOU-97_CA17-001), German-Israeli Project Cooperation (grant DIP-B-4.3), the Israel Discount Bank Chair of Evolutionary Biology, and the Ancell-Teicher Research Foundation for Molecular Genetics and Evolution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Gutterman.

Additional information

Communicated by R. Hagemann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Chen, G., Huang, Q. et al. Genetic basis of barley caryopsis dormancy and seedling desiccation tolerance at the germination stage. Theor Appl Genet 110, 445–453 (2005). https://doi.org/10.1007/s00122-004-1851-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1851-1

Keywords

Navigation