Skip to main content
Log in

Candidate gene analysis of anthocyanin pigmentation loci in the Solanaceae

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Crop species in the Solanaceae, which includes tomato (Lycopersicon esculentum), potato (Solanum tuberosum), pepper (Capsicum spp.), and eggplant (S. melongena), exhibit natural variation in the types, levels, and tissue-specific expression patterns of anthocyanin pigments. While the identities of the genes underpinning natural variation in anthocyanin traits in these crops are largely unknown, many structural genes and regulators of anthocyanin biosynthesis have been isolated from the solanaceous ornamental species Petunia. To identify candidate genes that may correspond to loci controlling natural variation in the four crops, 13 anthocyanin-related genes were localized on a tomato F2 genetic map. Gene map positions were then compared to mapped mutants in tomato and through comparative genetic maps to natural variants in potato, eggplant, and pepper. Similar map positions suggest that the tomato mutants anthocyaninless, entirely anthocyaninless, and anthocyanin gainer correspond to flavonoid 3′5′-hydroxylase (f3′5′h), anthocyanidin synthase, and the Petunia Myb domain trancriptional regulatory gene an2, respectively. Similarly potato R, required for the production of red pelargonidin-based pigments, P, required for production of purple delphinidin-based pigments, and I, required for tissue-specific expression in tuber skin, appear to correspond to dihydroflavonol 4-reductase, f3′5′h and an2, respectively. The map location of an2 also overlaps pepper A and eggplant fap10.1, lla10.1, lra10.1, sa10.1, pa10.1 and ca10.1, suggesting that a homologous regulatory locus has been subjected to parallel selection in the domestication of many solanaceous crops. To test the hypothesis that tomato anthocyaninless corresponds to f3′5′h, a portion of the gene was sequenced. A premature stop codon was observed in an anthocyaninless mutant, but not in wild-type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Beld M, Martin C, Huits H, Stuitje AR, Gerats AGM (1989) Flavonoid synthesis in Petunia hybrida: partial characterization of dihydroflavonol-4-reductase genes. Plant Mol Biol 13:491–502

    CAS  PubMed  Google Scholar 

  • Ben Chaim A, Borovsky Y, De Jong W, Paran I. Linkage of the A locus for the presence of anthocyanin and fs10.1, a major fruit shape QTL in pepper. Theor Appl Genet 106:889–894

    Google Scholar 

  • Bongue-Bartelsman M, O’Neill SD, Tong Y, Yoder JI (1994) Characterization of the gene encoding dihydroflavonol 4-reductase in tomato. Gene 138:153–157

    CAS  PubMed  Google Scholar 

  • Bonierbale M, Plaisted RL, Tanksley SD (1988) RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120:1095–1103

    Google Scholar 

  • Borgnino F, Rick CM, Opena RT, Zobel RW (1973) Two more anthocyaninless loci for chromosome 2. Tomato Genetics Cooperative Report No. 23.

  • Daskalov S, Poulos JM (1994) Updated Capsicum gene list. Capsicum Eggplant Newsl 13:15–26

    Google Scholar 

  • De Jong H (1991) Inheritance of anthocyanin pigmentation in the cultivated potato: a critical review. Am Pot J 68:585–593

    Google Scholar 

  • De Jong WS, De Jong DM, De Jong H, Kalazich J, Bodis M (2003) An allele of dihydroflavonol 4-reductase associated with the ability to produce red anthocyanin pigments in potato (Solanum tuberosum L.). Theor Appl Genet (in press)

  • Dodds KS, Long DH (1955) The inheritance of colour in diploid potatoes. I. Types of anthocyanidins and their genetic loci. J Genet 53:136–149

    CAS  Google Scholar 

  • Dodds KS, Long DH (1956) The inheritance of colour in diploid potatoes. II. Three-factor linkage group. J Genet 54:27–41

    Google Scholar 

  • Doganlar S, Frary A, Daunay M-C., Lester RN, Tanksley SD (2002a) A comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the Solanaceae. Genetics 161:1697–1711

    Google Scholar 

  • Doganlar S, Frary A, Daunay M-C., Lester RN, Tanksley SD (2002b) Conservation of gene function in the Solanaceae as revealed by comparative mapping of domestication traits in eggplant. Genetics 161:1713–1726

    CAS  PubMed  Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabelling DNA restriction fragments to a high specific activity. Anal Biochem 132:6–13

    PubMed  Google Scholar 

  • Fulton TM, van der Hoeven R, Eannetta NT, Tanksley SD (2002) Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell 14:1457–1467

    Google Scholar 

  • Gebhardt C, Ritter E, Barone A, Debener T, Walkmeier B, Schachtschabel U, Kaufmann H, Thompson RD, Bonierbale MW, Ganal MW, Tanklsey SD, Salamini F (1991) RFLP maps of potato and their alignment with the homeologous tomato genome. Theor Appl Genet 83:49–57

    Google Scholar 

  • Goldsbrough A, Belzile F, Yoder JI (1994) Complementation of the tomato anthocyanin without (aw) mutant using the dihydroflavonol 4-reductase gene. Plant Physiol 105:491–496

    CAS  PubMed  Google Scholar 

  • Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071–1083

    CAS  Google Scholar 

  • Holton TA, Brugliera F, Lester DR, Tanaka Y, Hyland CD, Menting JGT, Lu C-Y, Farcy E., Stevenson TW, Cornish EC (1993) Cloning and expression of cytochrome P450 genes controlling flower colour. Nature 366:276–279

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    CAS  PubMed  Google Scholar 

  • Lewis CE, Walker JRL, Lancaster JE, Sutton KH (1998) Determination of anthocyanins, flavonoids and phenolic acids in potatoes. I. Coloured cultivars of Solanum tuberosum L. J Sci Food Agric 77:45–57

    Article  CAS  Google Scholar 

  • Livingstone KD, Lackney VK, Blauth JR, van Wijk R, Jahn MK (1999) Genome mapping in Capsicum and the evolution of genome structure in the Solanaceae. Genetics 152:1183–1202

    CAS  PubMed  Google Scholar 

  • Menssen A, Hohmann S, Martin W, Scanle PS, Peterson PA, Saedler H, Gierl A (1990) The En/Spm transposable element of Zea mays contains splice sites at the termini generating a novel intron from a dSpm element in the A2 gene. EMBO J 9:3051–3058

    CAS  PubMed  Google Scholar 

  • Mutschler MAM, Tanksley SD, Rick CM (1987) 1987 Linkage maps of the tomato (Lycopersicon esculentum). Tomato Genet Coop Rep 37

  • Noda Y, Kneyuki T, Igarashi K, Mori A, Packer L (2000) Antioxidant activity of nasunin, an anthocyanin in eggplant peels. Toxicology 148:119–123

    Article  CAS  PubMed  Google Scholar 

  • O’Neill SD, Tong Y, Sporlein B, Forkmann G, Yoder JI (1990) Molecular genetic analysis of chalcone synthase in Lycopersicon esculentum and an anthocyanin-deficient mutant. Mol Gen Genet 224:279–288

    CAS  PubMed  Google Scholar 

  • Quattrocchio F, Wing JF, van der Woude K, Mol JNM, Koes R (1998) Analysis of bHLH and MYB domain proteins: species-specific regulatory differences are caused by divergent evolution of target anthocyanin genes. Plant J 13:475–488

    CAS  PubMed  Google Scholar 

  • Quattrocchio F, Wing JF, van der Woude K, Souer E, de Vetten N, Mol JNM, Koes R (1999) Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color. Plant Cell 11:1433–1444

    CAS  PubMed  Google Scholar 

  • Selinger DA, Chandler VL (1999) Major recent and independent changes on levels and patterns of expression have occurred at the b gene, a regulatory locus in maize. Proc Nat Acad Sci USA 96:15007–15012

    Article  CAS  PubMed  Google Scholar 

  • Spelt C, Quattrocchio F, Mol JNM, Koes R (2000) anthocyanin1 of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. Plant Cell 12:1619–1631

    CAS  PubMed  Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovanonni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Roder MS, Wing RA, Wu W, Young ND (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    CAS  PubMed  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  • Thorup TA, Tanyolac B, Livingstone KD, Popovsky S, Paran I, Jahn M (2000) Candidate gene analysis of organ pigmentation loci in the Solanaceae. Proc Natl Acad Sci USA 97:11192–11197

    CAS  PubMed  Google Scholar 

  • Van Eck HJ (1995) Localisation of morphological traits on the genetic map of potato using RFLP and isozyme markers. Ph.D thesis, Wageningen Agricultural University

  • Van Eck HJ, Jacobs JME, van Dijk J, Stiekema WJ, Jacobsen E (1993) Identification and mapping of three flower colour loci of potato (S. tuberosum L.) by RFLP analysis. Theor Appl Genet 86:295–300

    Google Scholar 

  • Van Eck HJ, Jacobs JME, Van Den Berg PMMM, Stiekema WJ, Jacobsen E (1994) The inheritance of anthocyanin pigmentation in potato (Solanum tuberosum L.) and mapping of tuber skin colour loci using RFLPs. Heredity 73:410–421

    Google Scholar 

  • Van Eck HJ, Rouppe van der Voort J, Draaistra J, van Zandvoort P, van Enckevort E, Segers B, Peleman J, Jacobsen E, Helder J, Bakker J (1995) The inheritance and chromosomal localisation of AFLP markers in a non-inbred potato offspring. Mol Breed 1:397–410

    Google Scholar 

  • Vetten N de, Quattrocchio F, Mol J, Koes R (1997) The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals. Genes Dev 11:1422–1434

    PubMed  Google Scholar 

  • Walker AR, Davison PA, Bolognesi-Winfield AC, James CM, Srinivasan N, Blundell TL, Esch JJ, Marks AD, Gray JC (1999) The transparent testa glabra1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 11:1337–1349

    Article  CAS  PubMed  Google Scholar 

  • Wettstein-Knowles P von (1967) Mutations affecting anthocyanin synthesis in the tomato. I. Genetics, histology, and biochemistry. Heredity 60:317–346

    Google Scholar 

  • Yoder JI, Belzile F, Tong Y, Goldsbrough A (1994) Visual markers for tomato derived from the anthocyanin biosynthetic pathway. Euphytica 79:163–167

    CAS  Google Scholar 

Download references

Acknowledgements

We thank S.D. Tanksley for providing tomato mapping filters and cDNA clones. This work was supported in part by Federal Hatch funds provided to W.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. S. De Jong.

Additional information

Communicated by H.F. Linskens

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Jong, W.S., Eannetta, N.T., De Jong, D.M. et al. Candidate gene analysis of anthocyanin pigmentation loci in the Solanaceae . Theor Appl Genet 108, 423–432 (2004). https://doi.org/10.1007/s00122-003-1455-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-003-1455-1

Keywords

Navigation