Skip to main content
Log in

Genetic mapping of Dn7, a rye gene conferring resistance to the Russian wheat aphid in wheat

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract.

The Russian wheat aphid is a significant pest problem in wheat and barley in North America. Genetic resistance in wheat is the most effective and economical means to control the damage caused by the aphid. Dn7 is a rye gene located on chromosome 1RS that confers resistance to the Russian wheat aphid. The gene was previously transferred from rye into a wheat background via a 1RS/1BL translocation. This study was conducted to genetically map Dn7 and to characterize the type of resistance the gene confers. The resistant line '94M370' was crossed with a susceptible wheat cultivar that also contains a pair of 1RS/1BL translocation chromosomes. The F2 progeny from this cross segregated for resistance in a ratio of 3 resistant: 1 susceptible, indicating a single dominant gene. One-hundred and eleven RFLP markers previously mapped on wheat chromosomes 1A, 1B and 1D, barley chromosome 1H and rye chromosome 1R, were used to screen the parents for polymorphism. A genetic map containing six markers linked to Dn7, encompassing 28.2 cM, was constructed. The markers flanking Dn7 were Xbcd1434 and XksuD14, which mapped 1.4 cM and 7.4 cM from Dn7, respectively. Dn7 confers antixenosis, and provides a higher level of resistance than that provided by Dn4. The applications of Dn7 and the linked markers in wheat breeding are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–C.
Fig. 2.

Similar content being viewed by others

References

  • Archer TL, Bynum EDJ (1992) Economic injury level for the Russian wheat aphid (Homoptera: Aphididae) on dryland winter wheat. J Econ Entomol 85:987–992

    Google Scholar 

  • Baum M, Appels R (1991) The cytogenetic and molecular architecture of chromosome 1R – one of the most widely utilized sources of alien chromatin in wheat varieties. Chromosoma 101:1–10

    CAS  PubMed  Google Scholar 

  • Boyko EV, Gill KS, Mickelson-Young L, Nasuda S, Raupp WJ, Ziegle JN, Singh S, Hassawi DS, Fritz AK, Namuth D, Lapitan NLV, Gill BS (1999) A high-density genetic linkage map of Aegilops tauschii, the D-genome progenitor of bread wheat. Theor Appl Genet 99:16–26

    CAS  Google Scholar 

  • Braun H-J, Payne TS, Morgounov AI, van Ginkel M, Rajaram S (1998) The challenge: one billion tons of wheat by 2020. In: Slinkard AE (ed) Proc 9th Int Wheat Genet Symp, Saskatoon, Canada

  • Causse M, Fulton TM, Cho YG, Ahn SN, Chunwongse J, Wu K, Xiao J, Yu Z, Ronald PC, Harrington SB, Second GA, MacCouch SR, Tanksley SD (1994) Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138:1251–1274

    CAS  PubMed  Google Scholar 

  • Devos K, Gale M (1993) The genetic maps of wheat and their potential in plant breeding. Outlook Agric 22:93–99

    Google Scholar 

  • Devos KM, Atkinson MD, Chinoy CN, Liu CJ, Gale MD (1992) RFLP-based genetic map of the homoeologous group-3 chromosomes of wheat and rye. Theor Appl Genet 83:931–939

    CAS  Google Scholar 

  • Devos K, Atkinson MD, Chinoy CN, Francis HA, Harcourt RL, Koebner RMD, Liu CJ, Masojc P, Xie DX, Gale MD (1993) Chromosomal rearrangements in the rye genome relative to that of wheat. Theor Appl Genet 85:673–680

    CAS  Google Scholar 

  • Dhaliwal AS, Mares DJ, Marshall DR (1987) Effect of 1B/1R chromosome translocation on milling and quality characteristics of bread wheats. Cereal Chem 64:72–76

    Google Scholar 

  • Du Toit F (1987) Resistance in wheat (Triticum aestivum) to Diuraphis noxia (Homoptera: Aphididae). Cereal Res Commun 15:175–179

    Google Scholar 

  • Du Toit F (1989) Inheritance of resistance in two Triticum aestivum lines to Russian wheat aphid (Homoptera: Aphididae). J Econ Entomol 82:1251–1253

    Google Scholar 

  • Du Toit F (1992) Russian wheat aphid resistance in a wheat line from the Caspian sea area. Cereal Res Commun 20:56–61

    Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13

    PubMed  Google Scholar 

  • Friebe B, Heun M, Bushuk W (1989) Cytological characterization, powdery mildew resistance and storage protein composition of tetraploid and hexaploid 1BL/1RS wheat-rye translocation lines. Theor Appl Genet 78:425–432

    Google Scholar 

  • Gale MD, Atkinson MD, Chinoy CN, Harcourt RL, Jia J, Li QV, Devos KM (1995) Genetic maps of hexaploid wheat. In: Li ZS, Xin ZY (eds) Proc 8th Int Wheat Genetics Symp, China Agric Scientech Press, Beijing, China, pp 29–40

  • Gill KS, Lubbers EL, Gill BS, Raupp WJ, Cox TS (1991) A genetic linkage map of Triticum tauschii (DD) and its relationship to the D genome of bread wheat (AABBDD). Genome 34:362–374

    Google Scholar 

  • Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Hermann RG (1991) Construction of an RFLP map of barley. Theor Appl Genet 83:250–256

    Google Scholar 

  • Graybosch RA, Peterson CJ, Hansen LE, Worral D, Shelton DR, Lukaszewski AJ (1993) Comparative flour quality and protein characteristics of 1BL/1RS and 1AL/1RS wheat-rye translocations. J Cereal Sci 17:95–106

    Article  CAS  Google Scholar 

  • Harvey TL, Martin TJ (1990) Resistance to Russian wheat aphid, Diuraphis noxia, in wheat (Triticum aestivum). Cereal Res Commun 18:127–129

    Google Scholar 

  • Heun M, Kennedy AE, Anderson JA, Lapitan NLV, Sorrells ME, Tanksley SD (1991) Construction of a restriction fragment length polymorphism map for barley. Genome 34:437–447

    Google Scholar 

  • Hull GA, Halford NG, Kreis M, Shewry PR (1991) Isolation and characterisation of genes encoding rye prolamins containing a highly repetitive sequence motif. Plant Mol Biol 17:1111–1115

    CAS  PubMed  Google Scholar 

  • Kleinhofs A, Kilian A, Saghai Maroof MA, Biyashev RM, Hayes PM, Chen FQ, Lapitan N, Fenwick A, Blake TK, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu B, Sorrells M, Heun M, Franckowiak JD, Hoffman D, Skadsen R, Steffenson BJ (1993) A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705–712

    CAS  Google Scholar 

  • Kogan M, Ortman EE (1978) Antixenosis – a new term proposed to define Painter's "nonpreference" modality of resistance. Bull Entomol Soc Am 24:175–176

    Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Korzun V, Malyshev S, Kartel N, Westermann T, Weber WE, Börner A (1998) A genetic linkage map of rye (Secale cereale L.). Theor Appl Genet 86:705–712

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary linkage maps of experimental and natural populations. Genomics 1:174–181

    CAS  PubMed  Google Scholar 

  • Lapitan N (1996) In situ hybridization in plant species with small chromosomes. In: Clark MS (ed), Plant molecular biology, a laboratory manual. Springer, New York, USA pp 512–519

  • Lawrence GJ, Shepherd KW (1981) Chromosomal locations of genes controlling seed proteins in species related to wheat. Theor Appl Genet 59:25–31

    CAS  Google Scholar 

  • Liu XM, Smith CM, Gill BS, Tolmay V (2001) Microsatellite markers linked to six Russian wheat aphidr esistance genes in wheat. Theor Appl Genet 102:504–510

    CAS  Google Scholar 

  • Liu XM, Smith CM, Gill BS (2002) Identification of microsatellite markers linked to Russian wheat aphid resistance genes Dn4 and Dn6. Theor Appl Genet 104:1042–1048

    Article  Google Scholar 

  • Lukaszewski AJ (2000) Manipulation of the 1RS.1BL translocation in wheat by induced homoeologous recombination. Crop Sci 40:216–225

    CAS  Google Scholar 

  • Ma ZQ, Saidi A, Quick JS, Lapitan NLV (1998) Genetic mapping of Russian wheat aphid resistance genes Dn2 and Dn4 in wheat. Genome 41:303–306

    CAS  Google Scholar 

  • Ma X-F, Wanous MK, Houchins K, Rodriguez Milla MA, Goicoechea PG, Wang Z, Xie M, Giustafson JP (2001) Molecular linkage mapping in rye (Secale cereale L.). Theor Appl Genet 102:517–523

    CAS  Google Scholar 

  • Marais GF, Du Toit F (1993) A monosomic analysis of Russian wheat aphid resistance in the common wheat PI 292994. Plant Breed 111:246–248

    Google Scholar 

  • Marais GF, Horn M, Du Toit F (1994) Intergeneric transfer (rye to wheat) of a gene(s) for Russian Wheat Aphid resistance. Plant Breed 113:265–271

    Google Scholar 

  • Marais GF, Wessels WG, Horn M, Du Toit F (1998) Association of stem rust resistance genes (Sr45) and two Russian wheat aphid resistance genes (Dn4 and Dn7) with mapped structural loci in common wheat. S Afr J Plant Soil 15:67–71

    Google Scholar 

  • Meyer WL, Nkongolo KK, Peairs FB, Quick JS (1989) Mechanism of resistance in the wheat line PI 372129 to the Russian wheat aphid. In: Baker D (ed) Proc 3rd, Russian Wheat Aphid Conference, Albuquerque, NM 25–27 Oct 1989, New Mexico State University, Las Cruces, New Mexico, pp 23–24

  • Miller CA, Altinkut A, Lapitan NLV (2001) A microsatellite marker for tagging Dn2, a wheat gene conferring resistance to the Russian wheat aphid. Crop Sci 41:1584–1589

    CAS  Google Scholar 

  • Morrison WP, Peairs FB (1998) Introduction, response model concept and economic impact. In: Quisenberry SS, Peairs FB (eds) A response model for an introduced pest – the Russian wheat aphid. Thomas Say Publisher in Entomology, Entomol Soc America, Lanham, Maryland, pp 1–11

  • Myburg AA, Cawood M, Wingfield BD, Botha AM (1998) Development of RAPD and SCAR markers linked to the Russian wheat aphid resistance gene in Dn2 in wheat. Theor Appl Genet 96:1162–1169

    Article  CAS  Google Scholar 

  • Nkongolo KK, Quick JS, Meyer WL, Peairs FB (1989) Russian wheat aphid resistance of wheat, rye, and triticale in greenhouse tests. Cereal Res Commun 17:227–233

    Google Scholar 

  • Nkongolo KK, Quick JS, Limin AE, Fowler DB (1991a) Sources and inheritance of resistance to Russian wheat aphid in Triticum species amphiploids and Triticum tauschii. Can J Plant Sci 71:703–708

    Google Scholar 

  • Nkongolo KK, Quick JS, Peairs FB, Meyer WL (1991b) Inheritance of resistance of PI 372129 wheat to the Russian wheat aphid. Crop Sci 31:905–907

    Google Scholar 

  • Nkongolo KK, Quick JS, Peairs FB (1992) Inheritance of resistance of three Russian triticale lines to the Russian wheat aphid. Crop Sci 83:689–692

    Google Scholar 

  • Nkongolo KK, Lapitan NLV, Quick JS (1996) Genetic and cytogenetic analyses of Russian wheat aphid resistance in triticale ×wheat hybrids and progenies. Crop Sci 36:1114–1119

    Google Scholar 

  • Peng J, Korol AB, Fahima T, Roder MS, Ronin YI, Youchun CL, Nevo E (2000) Molecular genetic maps in wild Emmer wheat, Triticum dicoccoides: genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Res 10:1509–1531

    CAS  PubMed  Google Scholar 

  • Philipp U, Wehling P, Wricke G (1994) A linkage map of rye. Theor Appl Genet 88:243–248

    CAS  Google Scholar 

  • Puterka GJ, Burd JD, Burton RL (1992) Biotypic variation in a worldwide collection of Russian wheat aphid (Homoptera: Aphididae). J Econ Entomol 85:1497–1506

    Google Scholar 

  • Quick JS, Nkongolo KK, Meyer W, Peairs FB, Weaver B (1991) Russian wheat aphid reaction and agronomic and quality traits of a resistant wheat. Crop Sci 31:50–53

    Google Scholar 

  • Quick JS, Ellis GE, Normann RM, Stromberger JA, Shanahan JF, Peairs FB, Rudolph JB, Lorenz K (1996) Registration of 'Halt' wheat. Crop Sci 36:210

    Google Scholar 

  • Quick JS, Stromberger JA, Clayshulte S, Clifford B, Johnson JJ, Peairs FB, Rudolph JB, Lorenz K (2001a) Registration of 'Prairie Red' wheat. Crop Sci 41:1362–1364

    Google Scholar 

  • Quick JS, Stromberger JA, Clayshulte S, Clifford B, Johnson JJ, Peairs FB, Rudolph JB, Lorenz K (2001b) Registration of 'Prowers' wheat. Crop Sci 41:928–929

    Google Scholar 

  • Quick JS, Stromberger JA, Clayshulte S, Clifford B, Johnson JJ, Peairs FB, Rudolph JB, Lorenz K (2001c) Registration of 'Yumar' wheat. Crop Sci 41:1363–1364

    Google Scholar 

  • Saidi A, Quick JS (1996) Inheritance and allelic relationships among Russian wheat aphid resistance genes in winter wheat. Crop Sci 36:256–258

    Google Scholar 

  • Sears ER (1984) Mutations in wheat that raise the level of meiotic chromosome pairing. Proc 16th Stadler Genetics Symp, Columbia, Missouri, pp 295–300

  • Singh NK, Shepherd KW, McIntosh RA (1990) Linkage mapping of genes for resistance to leaf, stem and stripe rusts and w-secalins on the short arm of rye chromosome 1R. Theor Appl Genet 80:609–616

    CAS  Google Scholar 

  • Smith CM, Schotzko DJ, Zemetra RS, Souza EJ (1992) Categories of resistance in wheat plant introductions resistant to the Russian wheat aphid (Homoptera: Aphididae). J Econ Entomol 85:1480–1484

    Google Scholar 

  • Spielmeyer W, Robertson M, Collins N, Leister D, Schilze-Lefert P, Seah S, Moullet O, Lagudah ES (1998) A superfamily of disease resistance gene analogs is located on all homoeologous chromosome groups of wheat (Triticum aestivum). Genome 41:782–788

    CAS  Google Scholar 

  • Stoetzel MB (1987) Information on and identification of Diuraphis noxia (Homoptera: Aphididae) and other aphid species colonizing leaves wheat and barley in the United States. J Econ Entomol 80:696–704

    Google Scholar 

  • Van Deynze AE, Dubcovsky J, Gill KS, Nelson JC, Sorrells ME, Dvorak BS, Gill BS, Lagudah ES, McCouch SR, Appels R (1995) Molecular-genetic maps for group-1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome 38:45–59

    Google Scholar 

  • Venter E, Botha AM (2000) Development of markers linked to Diuraphis noxia resistance in wheat using a novel PCR RFLP approach. Theor Appl Genet 100:965–970

    Article  CAS  Google Scholar 

  • Webster JA, Starks KJ, Burton RL (1987) Plant resistance studies with Diuraphis noxia (Homoptera: Aphididae), a new United States wheat pest. J Econ Entomol 80:944–949

    Google Scholar 

  • Webster JA, Treat R, Morgan L, Elliott N, compilers (2000) Economic impact of the Russian wheat aphid and greenbug in the western United States 1993–1994, 1994–1995, and 1997–1998, USDA-ARS Report

  • Zemetra RS, Schotzko DJ, Smith CM, Lauver M (1990) Seedling resistance to Russian wheat aphid in white wheat germplasm. Cereal Res Commun 18:223–227

    Google Scholar 

  • Zhang Y, Quick JS, Liu S (1998) Genetic variation in PI 294994 wheat for resistance to Russian wheat aphid. Crop Sci 38:527–530

    Google Scholar 

Download references

Acknowledgements.

We thank Frank Peairs and Jeff Rudolph for assistance with the screening of genetic materials with the Russian wheat aphid at the CSU Insectary. This project was partially funded by USDA Contract No. 98-34205-6375, USDA Contract No. 2001-52100-11293, and Hatch Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nora L. V. Lapitan.

Additional information

Communicated by J. Dvorak

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, G.R., Papa, D., Peng, J. et al. Genetic mapping of Dn7, a rye gene conferring resistance to the Russian wheat aphid in wheat. Theor Appl Genet 107, 1297–1303 (2003). https://doi.org/10.1007/s00122-003-1358-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-003-1358-1

Keywords.

Navigation