Skip to main content
Log in

MRT-navigierte stereotaktische Prostatabiopsie

Echtzeitfusion von MRT und transrektalem Ultraschall zu perinealen Prostatastanzbiopsien

MRI navigated stereotactic prostate biopsy

Fusion of MRI and real-time transrectal ultrasound images for perineal prostate biopsies

  • Originalien
  • Published:
Der Urologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Um die Prostatakarzinomdiagnostik zu optimieren wurde ein neues System für perineale Prostatastanzbiopsien entwickelt, welches eine Echtzeitübertragung von MRT-Daten auf den periinterventionellen Ultraschall gestattet. Hierdurch können suspekte Läsionen gezielt biopsiert werden. Darüber hinaus erlaubt das System, den Entnahmeort jeder einzelnen Biopsie in einer virtuell dreidimensional (3D-)konfigurierten Prostata zu dokumentieren.

Material und Methoden

Bei 50 konsekutiven Patienten (Alter 67 Jahre, PSA 8,9 ng/ml, Prostatavolumen 51 ml) wurden ein multiparametrisches 3-T-MRT ohne Endorektalspule und anschließend eine stereotaktische Biopsie durchgeführt. Mit Hilfe eines eigens konstruierten TRUS-Schallkopfes, der auf einem speziellen Führungssystem montiert ist, wurde ein 3D-Datensatz der Prostata generiert und mit dem MRT fusioniert. Anschließend wurden suspekte MRT-Befunde gezielt perineal biopsiert. Darüber hinaus wurden nicht auffällige Prostataareale systematisch gestanzt.

Ergebnisse

Bei 27 von 50 Patienten wurde ein Prostatakarzinom diagnostiziert. Bei zuvor negativ biopsierten Männern erfolgte ein Tumornachweis in 36%. Eine positive Korrelation zwischen MRT-Befund und Histopathologie fand sich bei 36/50 Patienten (72%). Bei hochsuspekten MRT-Läsionen lag die Detektionsrate bei 100% (13/13). Betrachtet man die einzelnen Zylinder aus hochsuspekten Arealen, so waren 40/75 (53%) positiv. Zum Vergleich waren nur 7% der systematischen Stanzen positiv (66/927). Die Abweichung zwischen der geplanten und der tatsächlich biopsierten Position in der Prostata betrug bei 1159 Stanzen im Mittel 1,7 mm. An Nebenwirkungen wurden ein Harnverhalt und ein Hämatom beobachtet. Harnwegsinfekte traten nicht auf.

Schlussfolgerungen

Perineale stereotaktische Prostatabiopsien unter Zuhilfenahme fusionierter MRT und Ultraschall Datensätze ermöglichen eine effektive Untersuchung von MRT-suspekten Läsionen. Zusätzlich ist es möglich, jede einzelne Biopsie exakt zu dokumentieren. Dadurch können MRT-Daten validiert und Therapien differenziert geplant werden. Die Morbidität des Eingriffs ist minimal.

Abstract

Background

A key challenge for prostate cancer (PC) therapy is to exactly diagnose tumor lesions. In this context we describe a new stereotactic prostate biopsy system, which integrates pre-interventional MRI with peri-interventional ultrasound for targeted perineal prostate biopsies. Furthermore, the novel system allows exact documentation of biopsies in three dimensions.

Patients and methods

Stereotactic biopsy was performed in 50 consecutive men with suspicion of PC [median age 67 years (42–77), mean PSA 8.9±6.8 ng/ml, and mean prostate volume 51±23.7 ml]. Twenty-five of these patients (50%) had already had a negative transrectal ultrasound (TRUS)-guided biopsy. All men underwent multiparametric, contrast-enhanced 3T MRI without endorectal coil. Suspicious lesions were marked before the obtained data were transferred to a novel stereotactic biopsy system. Using a custom-made biplane TRUS probe mounted on a stepper, 3-D ultrasound data were generated and fused with the MRI. As a result, suspicious MRI lesions were superimposed onto the TRUS data. Next, 3-D biopsy planning was performed including systematic biopsies from the peripheral zone of the prostate. According to local standards patients were treated with perioperative quinolone antibiotics and applied a rectal enema the evening before the procedure. Perineal biopsies were taken under live US imaging, and the location of each biopsy was documented in an individual 3-D model. Feasibility, safety, target registration error, and cancer detection were evaluated.

Results

The median number of biopsies taken per patient was 24 (12–36). In 27 men of the initial cohort of 50 consecutive patients presented here, biopsy samples showed PC (54%). In patients undergoing their first biopsy, cancerous lesions were diagnosed in 13 of 19 patients (68%). The result was positive in 36% of men undergoing a re-biopsy without previous cancer diagnosis (9/25). A positive correlation between MRI findings and histopathology was found in 72%. In MRI lesions marked as highly suspicious, the tumor detection rate was 100% (13/13). Looking at single cores from highly suspicious lesions, 40 of 75 (53%) biopsies were positive. The target registration error of the first 1,159 biopsy cores was 1.7 mm. Regarding adverse effects, one patient experienced urinary retention and one patient a perineal hematoma. Urinary tract infections did not occur.

Conclusion

Perineal stereotactic prostate biopsies guided by the combination of MRI and ultrasound allow effective examination of suspicious MRI lesions. Each biopsy core taken is documented accurately for its location in 3-D enabling MRI validation and tailored treatment planning. The morbidity of the procedure was minimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Abdollah F, Novara G, Briganti A et al (2010) Trans-rectal versus trans-perineal saturation rebiopsy of the prostate: is there a difference in cancer detection rate? Urology 77(4):921–925, doi:10.1016/j.urology.2010.1008.1048

    Article  PubMed  Google Scholar 

  2. Anastasiadis AG, Lichy MP, Nagele U et al (2006) MRI-guided biopsy of the prostate increases diagnostic performance in men with elevated or increasing PSA levels after previous negative TRUS biopsies. Eur Urol 50:738–748

    Article  PubMed  CAS  Google Scholar 

  3. Barzell WE, Melamed MR (2007) Appropriate patient selection in the focal treatment of prostate cancer: the role of transperineal 3-dimensional pathologic mapping of the prostate – a 4-year experience. Urology 70:27–35

    Article  PubMed  Google Scholar 

  4. Bray F, Lortet-Tieulent J, Ferlay J et al (2010) Prostate cancer incidence and mortality trends in 37 European countries: an overview. Eur J Cancer 46:3040–3052

    Article  PubMed  CAS  Google Scholar 

  5. Campos-Fernandes JL, Bastien L, Nicolaiew N et al (2009) Prostate cancer detection rate in patients with repeated extended 21-sample needle biopsy. Eur Urol 55:600–606

    Article  PubMed  Google Scholar 

  6. Chun FK, Epstein JI, Ficarra V et al (2010) Optimizing performance and interpretation of prostate biopsy: a critical analysis of the literature. Eur Urol 58:851–864

    Article  PubMed  Google Scholar 

  7. De La Rosette JJMCH, Wink MH, Mamoulakis C et al (2009) Optimizing prostate cancer detection: 8 versus 12-core biopsy protocol. J Urol 182:1329–1336

    Article  Google Scholar 

  8. Eggener S, Salomon G, Scardino PT et al (2010) Focal therapy for prostate cancer: possibilities and limitations. Eur Urol 58:57–64

    Article  PubMed  Google Scholar 

  9. Emiliozzi P, Longhi S, Scarpone P et al (2001) The value of a single biopsy with 12 transperineal cores for detecting prostate cancer in patients with elevated prostate specific antigen. J Urol 166:845–850

    Article  PubMed  CAS  Google Scholar 

  10. Engelhard K, Hollenbach HP, Kiefer B et al (2006) Prostate biopsy in the supine position in a standard 1.5-T scanner under real time MR-imaging control using a MR-compatible endorectal biopsy device. Eur Radiol 16:1237–1243

    Article  PubMed  CAS  Google Scholar 

  11. Hambrock T, Somford DM, Hoeks C et al (2010) Magnetic resonance imaging guided prostate biopsy in men with repeat negative biopsies and increased prostate specific antigen. J Urol 183:520–528

    Article  PubMed  CAS  Google Scholar 

  12. Heidenreich A, Bellmunt J, Bolla M et al (2011) EAU guidelines on prostate cancer. part 1: screening, diagnosis, and treatment of clinically localised disease. Eur Urol 59:61–71

    Article  PubMed  Google Scholar 

  13. Loch T (2004) Computerized supported transrectal ultrasound (C-TRUS) in the diagnosis of prostate cancer. Urologe A 43:1377–1384

    Article  PubMed  CAS  Google Scholar 

  14. Miyagawa T, Ishikawa S, Kimura T et al (2010) Real-time virtual sonography for navigation during targeted prostate biopsy using magnetic resonance imaging data. Int J Urol 17:855–860

    Article  PubMed  Google Scholar 

  15. Onik G, Barzell W (2008) Transperineal 3D mapping biopsy of the prostate: an essential tool in selecting patients for focal prostate cancer therapy. Urol Oncol 26:506–510

    Article  PubMed  Google Scholar 

  16. Onik G, Miessau M, Bostwick DG (2009) Three-dimensional prostate mapping biopsy has a potentially significant impact on prostate cancer management. J Clin Oncol 27:4321–4326

    Article  PubMed  Google Scholar 

  17. Pondman KM, Fütterer JJ, Ten Haken B et al (2008) MR-guided biopsy of the prostate: an overview of techniques and a systematic review. Eur Urol 54:517–527

    Article  PubMed  Google Scholar 

  18. Roehrborn CG, Andriole GL, Wilson TH et al (2011) Effect of dutasteride on prostate biopsy rates and the diagnosis of prostate cancer in men with lower urinary tract symptoms and enlarged prostates in the combination of avodart and tamsulosin trial. Eur Urol 59:244–249

    Article  PubMed  CAS  Google Scholar 

  19. Scattoni V, Zlotta A, Montironi R et al (2007) Extended and saturation prostatic biopsy in the diagnosis and characterisation of prostate cancer: a critical analysis of the literature. Eur Urol 52:1309–1322

    Article  PubMed  Google Scholar 

  20. Singh AK, Kruecker J, Xu S et al (2008) Initial clinical experience with real-time transrectal ultrasonography-magnetic resonance imaging fusion-guided prostate biopsy. BJU Int 101:841–845

    Article  PubMed  Google Scholar 

  21. Tosoian JJ, Trock BJ, Landis P et al (2011) Active surveillance program for prostate cancer: an update of the Johns Hopkins experience. J Clin Oncol, doi: 10.1200/JCO.2010.32.8112

  22. Turkbey B, Pinto PA, Mani H et al (2010) Prostate cancer: value of multiparametric MR imaging at 3T for detection – histopathologic correlation. Radiology 255:89–99

    Article  PubMed  Google Scholar 

  23. Turkbey B, Xu S, Kruecker J et al (2011) Documenting the location of prostate biopsies with image fusion. BJU Int 107:53–57

    Article  PubMed  Google Scholar 

  24. Ukimura O, Hirahara N, Fujihara A et al (2010) Technique for a hybrid system of real-time transrectal ultrasound with preoperative magnetic resonance imaging in the guidance of targeted prostate biopsy. Int J Urol 17:890–893

    Article  PubMed  Google Scholar 

  25. Ukimura O, Hung AJ, Gill IS (2011) Innovations in prostate biopsy strategies for active surveillance and focal therapy. Curr Opin Urol 21:115–120

    Article  PubMed  Google Scholar 

  26. Xu S, Kruecker J, Turkbey B et al (2008) Real-time MRI-TRUS fusion for guidance of targeted prostate biopsies. Comput Aided Surg 13:255–264

    Article  PubMed  Google Scholar 

  27. Yakar D, Hambrock T, Huisman H et al (2010) Feasibility of 3T dynamic contrast-enhanced magnetic resonance-guided biopsy in localizing local recurrence of prostate cancer after external beam radiation therapy. Invest Radiol 45:121–125

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.H. Kuru.

Additional information

B.A. Hadaschik und M. Hohenfellner teilen sich die Seniorautorenschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuru, T., Tulea, C., Simpfendörfer, T. et al. MRT-navigierte stereotaktische Prostatabiopsie. Urologe 51, 50–56 (2012). https://doi.org/10.1007/s00120-011-2707-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-011-2707-3

Schlüsselwörter

Keywords

Navigation