Skip to main content
Log in

Molekularbiologische Erklärungsansätze einer Lymphknotenmetastasierung

Molecular biology approach to explain lymphatic metastasis

  • Leitthema
  • Published:
Der Urologe, Ausgabe A Aims and scope Submit manuscript

Zusammenfassung

Die Metastasierung von Tumorzellen solider Tumoren in die regionalen Lymphknoten ist ein wichtiger Schritt in der Progression der Erkrankung und stellt bei vielen Tumoren einen entscheidenden prognostischen Faktor dar. Während der prognostische Wert des Lymphknotenbefalls bereits früh erkannt wurde, so wurde erst durch die Zunahme der molekularen Kenntnisse der Mechanismen, die zu einer lymphogenen Tumorzellausbreitung führen, ein beginnendes Verständnis des Systems der lymphogenen Metastasierung ermöglicht. Hierbei spielen Faktoren eine Rolle, die von den Zellen des Primärtumors gebildet werden und eine Proliferation von Lymphgefäßen in den Primarius induzieren.

Die vaskulären endothelialen Wachstumsfaktoren (VEGF) wurden als Schlüsselmoleküle dieses Prozesses identifiziert. Zudem gibt es Hinweise, dass die Familie der Chemokinrezeptoren an Tumorzellen Schlüsselschritte der lymphogenen Metastasierung wie Migration, Invasion und Proliferation steuern. In jüngster Zeit entwickeln sich therapeutische Möglichkeiten der Hemmung der lymphogenen Tumorzellausbreitung durch selektive Inhibition von Wachstumsfaktorrezeptoren oder Chemokinrezeptoren.

Das zunehmende Verständnis dieser molekularen Mechanismen der lymphatischen Metastasierung wird die Entwicklung neuer diagnostischer und therapeutischer Ansätze in der Therapie von Tumorpatienten ermöglichen.

Abstract

The spread of tumor cells of solid tumors to the regional lymph nodes is an important step in the progression of the disease and also an important prognostic factor. While the significance of the prognostic value of the lymphatic progression had been detected long ago, only increased knowledge of the molecular anatomy and mechanisms involved in the lymphatic spread of tumor cells provided a beginning insight into the understanding of lymphatic metastasis. One group of important molecular factors consists of proteins produced by the tumor cells inducing a proliferation of lymphatic vessels into the primary tumor.

The vascular endothelial growth factors have been identified as key factors in this process. In addition there are hints for the fact that chemokines, which are cytokine-like proteins taking part in the regulation of processes of inflammation, and their chemokine receptors control cellular key steps of lymphatic metastasis of tumor cells such as migration, proliferation, and invasion. In conclusion new data point to the possible inhibition of lymphatic spread by selective blockade of growth factor receptors or chemokine receptors.

The growing insight into cellular understanding of the mechanisms involved in the metastasis of tumor cells into the lymphatics and lymph nodes will hopefully facilitate the development of new diagnostic and therapeutic tools in the treatment of cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Foster RS Jr (1996) The biologic and clinical significance of lymphatic metastases in brest cancer. Surg Oncol Clin North Am 5: 79–104

    Google Scholar 

  2. Mc Guire WL (1987) Prognostic factors for recurrence and survival in human breast cancer. Breast Cancer Res Treat 10: 5–9

    PubMed  Google Scholar 

  3. Harrison JC, Dean PJ, El-Zeky F, Vander Zwaag R (1994) From Dukes through Jass. Pathologic prognostic indicators in rectal cancer. Hum Pathol 25: 498–505

    Article  CAS  PubMed  Google Scholar 

  4. Balch CM, Soong S-J, Gershenwald JE (2001) Prognostic factors analysis of 17600 melanom patients: validation of the American Joint Committee on Cancer Melanoma Staging System. J Clin Oncol 19: 3622–3634

    Google Scholar 

  5. Casley Smith JR (1980) The fine structure and functioning of tissue channels and lymphatics. Lymphology 12: 177–183

    Google Scholar 

  6. Moore KL (1985) Clinically orientated anatomy. Williams & Wilkens, Baltimore, pp 42–45

  7. Roitt I, Brostoff J, Male D (1998) Immunology. Mosby, London, pp 31–41

  8. Liotta LA, Kohn E (2001) Microenviroment of tumor-host interface. Nature 11: 375–379

    Article  Google Scholar 

  9. Carr I (1983) Lymphatic metastasis. Cancer Metastasis Rev 2: 307–317

    Article  CAS  PubMed  Google Scholar 

  10. Van den Felde CJH, Carr I (1977) Lymphatic invasion and metastasis. Experientia 33: 837–884

    PubMed  Google Scholar 

  11. Sabin F (1902) On the origin and development of the lymphatic system from the veins and the development of lymph hearts and the thoracic duct in the pig. Am J Anat 1: 367–389

    Article  Google Scholar 

  12. Sabin F (1912) On the origin of abdominal lymphatics in mammals from the vena cava and renal veins. Anat Rec 6: 335–343

    Article  Google Scholar 

  13. Kaipainen A, Korhonen J, Mustonen T et al. (1995) Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci 92: 3566–3570

    CAS  PubMed  Google Scholar 

  14. Lymboussaki A, Partanen TA, Olofsson B et al. (1998) Expression of the vascular endothelial growth factor C receptor VEGFR-3 in lymphatic endothelium of the skin and in vascular tumors. Am J Pathol 153: 395–403

    CAS  PubMed  Google Scholar 

  15. Ortega N, Hutchings H, Plouet J (1999) Signal relays in the VEGF system. Front Biosci 4: 141–152

    Google Scholar 

  16. Zachary I (1998) Vascular endothelial growth factor: how it transmits its signal. Exp Nephrol 6: 480–487

    Article  CAS  PubMed  Google Scholar 

  17. Joukov V, Pajusola K, Kaipainen A et al. (1996) A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 15: 1751

    CAS  PubMed  Google Scholar 

  18. Bernatchez PN, Rollin S, Soker S, Sirois MG (2002) Relative effects of VEGF-A and VEGF-C on endothelial cell proliferation, migration and PAF synthesis: role of neuropilin-1. J Cell Biochem 85: 629–639

    Article  CAS  PubMed  Google Scholar 

  19. Achen MG, Jeltsch M, Kukk E et al. (1998) Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Ntl Acad Sci 95: 548–553

    Article  CAS  Google Scholar 

  20. Partanen TA, Arola J, Saaristo A et al. (2000) VEGF-C and VEGF-D expression in neuroendocrine cells and their receptor, VEGFR-3, in fenestrated blood vessels in human tissues. FASEB J 14: 2087–2096

    Article  CAS  PubMed  Google Scholar 

  21. Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M (1998) Neuropilin-1 is expressed by endothelial and tumor cells as an isoform specific receptor for vascular endothelial growth factor. Cell 92: 735–745

    Article  CAS  PubMed  Google Scholar 

  22. Neufeld G, Cohen T, Gengrinovitch S, Poltrak Z (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13: 9–22

    CAS  PubMed  Google Scholar 

  23. Li X, Eriksson U (2001) Novel VEGF family members: VEGF-B, VEGF-C and VEGF-D. Int J Biochem Cell Biol 33: 421–426

    Article  CAS  PubMed  Google Scholar 

  24. Skobe M, Hawighorst T, Jackson DG et al. (2001) Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nature Med 7: 192–198

    Article  CAS  PubMed  Google Scholar 

  25. Mattila MM, Ruohola JK, Karpanen T, Jackson DG, Härkönen PL (2002) VEGF-C-induced lymphangiogenesis is associated with lymph node metastasis in orthotopic MCF-7 tumors. Int J Cancer 98: 946–951

    CAS  PubMed  Google Scholar 

  26. Stacker SA, Caesar C, Baldwin ME et al. (2001) VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nature Med 7: 186–191

    Article  CAS  PubMed  Google Scholar 

  27. Achen MG, Roufail S, Domagala T et al. (2000) Monoclonal antibodies to vascular endothelial growth factor D block interactions with both VEGF receptor-2 and VEGF receptor-3. Eur J Biochem 267: 2505–2515

    Article  CAS  PubMed  Google Scholar 

  28. Tsurusaki T, Kanda S, Sakai H, Kanetake H, Saito Y, Alitalo K, Koji T (1999) Vascular endothelial growth factor-C expression in human prostatic carcinoma and its relationship to lymph node metastasis. Br J Cancer 80: 309–313

    Article  CAS  PubMed  Google Scholar 

  29. Jain RK (1987) Transport of moleciules across tumor vasculature. Cancer Metastasis Rev 6: 559–593

    Article  CAS  PubMed  Google Scholar 

  30. Nathanson SD, Zarbo RJ, Wachna DL, Spence CA, Andrzejewski TA, Abrams J (2000) Microvessels that predict axillary lymph node metastases in patients with breast cancer. Arch Surg 135: 586–593

    Article  CAS  PubMed  Google Scholar 

  31. Suzuki K, Morita T, Tokue A (2005) Vascular endothelial growth factor-C (VEGF-C) expression predicts lymph node metastasis of transitional cell carcinoma of the bladder. Int J Urol 12: 152–158

    Article  CAS  PubMed  Google Scholar 

  32. Lee JY, Spicer AP (2000) Hyaloronan: a multifunctional, megaDalton stealth molecule. Curr Opin Cell Biol 36: 129–149

    Google Scholar 

  33. Knudson CB, Knudson W (1993) Hyaloronan-binding proteins in development, tissue hemostasis and disease. FASEB J 7: 1233–1241

    CAS  PubMed  Google Scholar 

  34. Banerij S, Ni J, Wang SX et al. (1999) LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph specific receptor for hyaloronan. J Cell Biol 144: 789–801

    Article  PubMed  Google Scholar 

  35. Jackson DG, Prevo R, Clasper S, Banerji S (2001) LYVE-1, the lymphatic system and tumor lymphangiogenesis. Trend Immunol 22: 317–321

    Article  CAS  Google Scholar 

  36. Carreira CM, Nasser SM, di Tomaso E, Padera TP, Boucher Y, Tomarev SI, Jain RK (2001) LYVE-1 is not restricted to lymph vessels: expression in normal liver blood sinusoids and down regulation in human liver cancer and cirrhosis. Cancer Res 61: 8079–8084

    CAS  PubMed  Google Scholar 

  37. Rafii S, Lyden D (2003) Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 9: 702–712

    Article  CAS  PubMed  Google Scholar 

  38. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9: 653–660

    Article  CAS  PubMed  Google Scholar 

  39. Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM (2002) Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 109: 337–346

    Google Scholar 

  40. Asahara T, Masuda H, Takahashi T et al. (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85: 221–228

    CAS  PubMed  Google Scholar 

  41. Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12: 121–127

    Article  CAS  PubMed  Google Scholar 

  42. Coussens LM, Werb Z (2002) Inflammation and Cancer. Nature 420: 860–867

    Article  CAS  PubMed  Google Scholar 

  43. Mantovani A, Muzio M, Garlanda C, Sozzani S, Allavena P (2001) Macrophage control of inflammation: negative pathways of regulation of inflammatory cytokines. Novartis Found Symp 234: 120–131

    CAS  PubMed  Google Scholar 

  44. Homey B, Müller A, Zlotnik A (2002) Chemokines agents for the immunotherapy of cancer? Nat Rev Immunol 2: 175–184

    Article  CAS  PubMed  Google Scholar 

  45. Müller A, Homey B, Soto H (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410: 50–56

    Article  PubMed  Google Scholar 

  46. Popik W, Hesselgesser JE, Pitha PM (1998) Binding of human immunodeficiency virus type 1 to CD4 and CXCR4 receptors differentially regulates expression of inflammatory genes and activates the MEK/ERK signalling pathway. J Virol 72: 6406–6413

    CAS  PubMed  Google Scholar 

  47. Stoll S, Delon J, Brotz TM, Germain RN (2002) Dynamic imaging of T cell-dendritic cel interactions in lymph nodes. Science 296: 1873–1880

    Article  PubMed  Google Scholar 

  48. Breitfeld D, Ohl L, Kremmer E (2000) Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles and support immunoglobulin production. J Exp Med 192: 1545–1552

    Article  CAS  PubMed  Google Scholar 

  49. Wiley HE, Gonzalez EB, Maki W, Wu M, Hwang ST (2001) Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst 93: 1638–1643

    CAS  PubMed  Google Scholar 

  50. Mashino K, Sadanaga N, Yamaguchi H (2002) Expression of chemokine receptor CCR7 is associated with lymph node metastasis in gastric carcinoma. Cancer Res 62: 2937–2941

    CAS  PubMed  Google Scholar 

  51. Moore MA (2001) The role of chemoattraction in cancer metastasis. Bioessays 23: 674–676

    Article  CAS  PubMed  Google Scholar 

  52. Mochizuki H, Matsubara A, Teishima J et al. (2004) Interaction of ligand-receptor system beteewn stromal-cell-derived factor-1 and CXC chemokine receptor 4 in human prostate cancer: a possible predictor of metastasis. Biochem Biophys Res Commun 320: 656–663

    Article  CAS  PubMed  Google Scholar 

  53. Eisenhardt A, Frey U, Tack M, Rosskopf D, Lümmen G, Rübben H, Siffert W (2005) Expression analysis and potential functional role of the CXCR4 Chemokine receptor in bladder cancer. Eur Urol 47: 111–117

    Article  CAS  PubMed  Google Scholar 

  54. Donzella GA, Schols D, Lin SW (1998) AMD3100, a small inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nat Med 4: 72–77

    Article  CAS  PubMed  Google Scholar 

  55. Scozzafava A, Mastrolorenzo A, Supuran T (2002) Non-peptidic chemokine receptor antagonists as emerging anti-HIV agents. J Enzyme Inhib Med Chem 17: 69–76

    Article  CAS  PubMed  Google Scholar 

  56. Murakami T, Maki W, Cardones A R, Fang H, Kyi A T, Nestle FO, Hwang ST (2002) Expression of CXC chemokine receptor-4 enhances the pulmonary metastatic potential of murine B16 melanoma cells. Cancer Res 62: 7328–7334

    CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. vom Dorp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

vom Dorp, F., Wullich, B., Gulbins, E. et al. Molekularbiologische Erklärungsansätze einer Lymphknotenmetastasierung. Urologe [A] 44, 608–613 (2005). https://doi.org/10.1007/s00120-005-0833-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-005-0833-5

Schlüsselwörter

Keywords

Navigation