Skip to main content
Log in

Tissue Engineering der Harnblase

Tissue engineering of the urinary bladder

  • Leitthema
  • Published:
Der Urologe, Ausgabe A Aims and scope Submit manuscript

Zusammenfassung

Im Tissue Engineering der Harnblase mit autologer Zelltransplantation ist die hochgradige Differenzierung der in vitro auf biokompatiblen Matrizes kultivierten Zellen für die Funktionalität der Gewebekonstrukte nach der Implantation essenziell. In diesem Zusammenhang hat die terminale Differenzierung der oberflächlichen Urothelzellen (UZ) aufgrund deren Barrierefunktion gegen Urin eine entscheidende Rolle. In dieser Arbeit beschäftigen wir uns mit der Bestimmung von optimierten Konditionen für die Bildung von terminal differenziertem Urothel für die Beschichtung von größeren Flächen biologischer Membranen. Das kann uns dem Ziel der klinischen Anwendung von funktionierenden Gewebekonstrukten näher bringen.

Abstract

In tissue engineering of the urinary bladder with autologous cell transplantation, high differentiation of the cells cultivated in vitro on biocompatible membranes is essential for the functionality of the tissue constructs after implantation. The terminal differentiation of superficial urothelial cells has a key role because of the barrier function of these cells against urine. The aim of this study was to determine optimized conditions for the creation of terminally differentiated urothelium to cover large membrane surfaces. This can bring us closer to the goal of using functioning tissue constructs in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Baskin LS, Hayward SW, Young P, Cunha GR (1996) Role of mesenchymal-epithelial interactions in normal bladder development. J Urol 156: 1820–1827

    Article  CAS  PubMed  Google Scholar 

  2. Cheng EY, Kropp BP (2000) Urologic tissue engineering with small-intestinal submucosa: potential clinical applications. World J Urol 18: 26–30

    CAS  PubMed  Google Scholar 

  3. Desgrandchamps F (2000) Biomaterials in functional reconstruction. Curr Opin Urol 10: 201–206

    Article  CAS  PubMed  Google Scholar 

  4. Frey P, Lutz N, Leuba AL (1996) Augmentation cystoplasty using pedicled and de-epithelialized gastric patches in the mini-pig model. J Urol 156: 608–613

    Article  CAS  PubMed  Google Scholar 

  5. Fujiyama C, Masaki Z, Sugihara H (1995) Reconstruction of the urinary bladder mucosa in three-dimensional collagen gel culture: fibroblast-extracellular matrix interactions on the differentiation of transitional epithelial cells. J Urol 153: 2060–2067

    Article  CAS  PubMed  Google Scholar 

  6. Liu W, Li Y, Cunha S, Hayward G, Baskin L (2000) Diffusable growth factors induce bladder smooth muscle differentiation. In Vitro Cell Dev Biol Anim 36: 476–484

    Article  CAS  PubMed  Google Scholar 

  7. Livesey SA, Herndon DN, Hollyoak MA, Atkinson YH, Nag A (1995) Transplanted acellular allograft dermal matrix. Potential as a template for the reconstruction of viable dermis. Transplantation 60: 1–9

    CAS  PubMed  Google Scholar 

  8. Lutz N, Frey P (1995) Enterocystoplasty using modified pedicled, detubularized, de-epithelialized sigmoid patches in the mini-pig model. J Urol 154: 893–898

    Article  CAS  PubMed  Google Scholar 

  9. Minuth WW, Strehl R, Schumacher K (2002) Von der Zellkultur zum Tissue Engineering. Pabst Science Publishers, Lengerich

  10. Staack A, Alexander T, Merguerian P, Terris MK (2001) Organ and species specificity in the stimulation of transitional epithelial cell growth by fibroblasts. Eur Urol 39: 471–477

    Article  CAS  PubMed  Google Scholar 

  11. Strehl R, Schumacher K, Vries U de, Minuth WW (2002) Proliferating cells vs. differentiated cells in tissue engineering. Tissue Eng 8: 37–42

    Article  PubMed  Google Scholar 

  12. Sugasi S, Lesbros Y, Bisson I, Zhang YY, Kucera P, Frey P (2000) In vitro engineering of human stratified urothelium: analysis of its morphology and function. J Urol 164: 951–957

    Article  CAS  PubMed  Google Scholar 

  13. Voytik-Harbin SL (2001) Three-dimensional extracellular matrix substrates for cell culture. Methods Cell Biol 63: 561–581

    CAS  PubMed  Google Scholar 

  14. Yoo JJ, Meng J, Oberpenning F, Atala A (1998) Bladder augmentation using allogenic bladder submucosa seeded with cells. Urology 51: 221–225

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Y, Kropp BP, Moore P et al. (2000) Coculture of bladder urothelial and smooth muscle cells on small intestinal submucosa: potential applications for tissue engineering technology. J Urol 164: 928–935

    Article  CAS  PubMed  Google Scholar 

Download references

Danksagung

Die Autoren danken Frau Dr. Uta Schmidt für die kritische Durchsicht des Manuskripts.

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ram-Liebig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ram-Liebig, G., Hakenberg, O.W. & Wirth, M.P. Tissue Engineering der Harnblase. Urologe [A] 43, 1217–1222 (2004). https://doi.org/10.1007/s00120-004-0690-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-004-0690-7

Schlüsselwörter

Keywords

Navigation