Skip to main content
Log in

Neue Kontrastmittel für die photonenzählende Computertomographie

New contrast agents for photon-counting computed tomography

  • Leitthema
  • Published:
Die Radiologie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Einführung energieselektiver photonenzählender Detektoren in die klinische Praxis stellt den nächsten Meilenstein der Computertomographie (CT) dar. Neben deutlich höherer Auflösung erlauben diese Detektoren die implizite Akquisition von Dual- bzw. Mehrspektren-Daten in nur einer Messung durch die Verwendung von typischerweise frei wählbaren Schwellwerten. Diese Fähigkeit entfachte das Interesse an neuen Kontrastmitteln auf Basis schwerer Elemente, sog. High-Z-Elementen, für die klinische CT neu.

Fragestellung

Im vorliegenden Artikel soll die potenzielle Eignung verschiedener chemischer Elemente als Kontrastmittel untersucht und mögliche klinische Anwendungen, beispielsweise die K‑Kanten-Bildgebung oder die simultane Applikation verschiedener Kontrastmittel, besprochen werden.

Diskussion

Erste präklinische Experimente sowie Versuche in Großtieren konnten potenzielle Vorteile von Kontrastmitteln auf Basis schwerer Elemente demonstrieren. So versprechen entsprechende Kontrastmittel beispielsweise eine deutliche Steigerung des Bildkontrasts gegenüber herkömmlichen jodbasierten Kontrastmitteln.

Abstract

Background

The introduction of energy-selective photon-counting detectors into clinical practice represents the next milestone in computed tomography (CT). In addition to significantly higher resolution, these detectors allow the implicit acquisition of dual or multispectral data in a single measurement through the use of typically freely selectable thresholds. This capability reignited the interest in new contrast agents based on heavy elements, so-called high‑z elements, for clinical CT.

Objective

The present article aims to investigate the potential suitability of different chemical elements as contrast agents and to discuss possible clinical applications, for example, K‑edge imaging or simultaneous application of different contrast agents.

Conclusion

First preclinical experiments as well as experiments in large animals could demonstrate potential advantages of contrast agents based on heavy elements. For example, such contrast agents promise a significant increase in image contrast compared to conventional iodine-based agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Lell MM, Wildberger JE, Alkadhi H, Damilakis J, Kachelrieß M (2015) Evolution in computed tomography: the battle for speed and dose. Invest Radiol 50(9):629–644. https://doi.org/10.1097/RLI.0000000000000172

    Article  PubMed  Google Scholar 

  2. Lell MM, Kachelrieß M (2020) Recent and upcoming technological developments in computed tomography: high speed, low dose, deep learning, multienergy. Invest Radiol 55(1):8–19. https://doi.org/10.1097/RLI.0000000000000601

    Article  PubMed  Google Scholar 

  3. Rajendran K et al (2022) First clinical photon-counting detector CT system: technical evaluation. Radiology 303(1):130–138. https://doi.org/10.1148/radiol.212579

    Article  PubMed  Google Scholar 

  4. Wehrse E et al (2021) Photon-counting detectors in computed tomography: from quantum physics to clinical practice. Radiologe 61(S1):1–10. https://doi.org/10.1007/s00117-021-00812-8

    Article  CAS  PubMed  Google Scholar 

  5. Taguchi K, Iwanczyk JS (2013) Vision 20/20: Single photon counting x‑ray detectors in medical imaging. Med Phys 40(10):100901. https://doi.org/10.1118/1.4820371

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nowak T, Hupfer M, Brauweiler R, Eisa F, Kalender WA (2011) Potential of high‑Z contrast agents in clinical contrast-enhanced computed tomography: Potential of high‑Z contrast agents in clinical CE-CT. Med Phys 38(12):6469–6482. https://doi.org/10.1118/1.3658738

    Article  CAS  PubMed  Google Scholar 

  7. Krieger H (2002) Grundlagen, 5. Aufl. Strahlenphysik, Dosimetrie und Strahlenschutz, Bd. 1. Teubner, Stuttgart

    Google Scholar 

  8. Bachert P (2018) Medizinische Physik: Grundlagen – Bildgebung – Therapie – Technik. Springer Spektrum, Berlin

    Google Scholar 

  9. Yeh BM et al (2017) Opportunities for new CT contrast agents to maximize the diagnostic potential of emerging spectral CT technologies. Adv Drug Deliv Rev 113:201–222. https://doi.org/10.1016/j.addr.2016.09.001

    Article  CAS  PubMed  Google Scholar 

  10. Schöckel L, Jost G, Seidensticker P, Lengsfeld P, Palkowitsch P, Pietsch H (2020) Developments in X‑Ray contrast media and the potential impact on computed tomography. Invest Radiol 55(9):592–597. https://doi.org/10.1097/RLI.0000000000000696

    Article  PubMed  Google Scholar 

  11. Nadjiri J et al (2018) Spectral computed tomography angiography with a gadolinium-based contrast agent: first clinical imaging results in cardiovascular applications. J Thorac Imaging 33(4):246–253. https://doi.org/10.1097/RTI.0000000000000335

    Article  PubMed  Google Scholar 

  12. Malusek A, Henriksson L, Eriksson P, Dahlström N, Carlsson Tedgren Å, Uvdal K (2021) On the possibility to resolve gadolinium- and cerium-based contrast agents from their ct numbers in dual-energy computed tomography. Radiat Prot Dosimetry 195(3–4):225–231. https://doi.org/10.1093/rpd/ncab078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu Y, Liu J, Ai K, Yuan Q, Lu L (2014) Recent advances in ytterbium-based contrast agents for in vivo X‑ray computed tomography imaging: promises and prospects: YTTERBIUM-BASED CONTRAST AGENTS. Contrast Media Mol Imaging 9(1):26–36. https://doi.org/10.1002/cmmi.1537

    Article  CAS  PubMed  Google Scholar 

  14. Liu J et al (2013) Large-scale and facile synthesis of biocompatible Yb-based nanoparticles as a contrast agent for in vivo X‑ray computed tomography imaging. Curr Top Med Chem 13(4):513–518. https://doi.org/10.2174/1568026611313040011

    Article  CAS  PubMed  Google Scholar 

  15. Berger M et al (2017) Hafnium-based contrast agents for X‑ray computed tomography. Inorg Chem 56(10):5757–5761. https://doi.org/10.1021/acs.inorgchem.7b00359

    Article  CAS  PubMed  Google Scholar 

  16. Sartoretti T et al (2021) Photon-counting multienergy computed tomography with spectrally optimized contrast media for plaque removal and stenosis assessment. Invest Radiol 56(9):563–570. https://doi.org/10.1097/RLI.0000000000000773

    Article  CAS  PubMed  Google Scholar 

  17. Chakravarty S et al (2020) Tantalum oxide nanoparticles as versatile contrast agents for X‑ray computed tomography. Nanoscale 12(14):7720–7734. https://doi.org/10.1039/D0NR01234C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Riederer I et al (2019) Liquid embolic agents in spectral X‑ray photon-counting computed tomography using tantalum K‑edge imaging. Sci Rep 9(1):5268. https://doi.org/10.1038/s41598-019-41737-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Firouzi M, Poursalehi R, Delavari H, Saba F, Oghabian MA (2017) Chitosan coated tungsten trioxide nanoparticles as a contrast agent for X‑ray computed tomography. Int J Biol Macromol 98:479–485. https://doi.org/10.1016/j.ijbiomac.2017.01.138

    Article  CAS  PubMed  Google Scholar 

  20. Sartoretti T et al (2020) Photon-counting CT with tungsten as contrast medium: Experimental evidence of vessel lumen and plaque visualization. Atherosclerosis 310:11–16. https://doi.org/10.1016/j.atherosclerosis.2020.07.023

    Article  CAS  PubMed  Google Scholar 

  21. Fu J et al (2020) Bismuth chelate as a contrast agent for X‑ray computed tomography. J Nanobiotechnology 18(1):110. https://doi.org/10.1186/s12951-020-00669-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu H, Guo H, Wang Y, Wang Y, Zhang L (2022) Bismuth nanomaterials as contrast agents for radiography and computed tomography imaging and their quality/safety considerations. WIREs Nanomed Nanobiotechnol. https://doi.org/10.1002/wnan.1801

    Article  Google Scholar 

  23. Domey J, Teichgräber U, Hilger I (2015) Gold nanoparticles allow detection of early-stage edema in mice via computed tomography imaging. Int J Nanomedicine. https://doi.org/10.2147/IJN.S77383

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sawall S et al (2020) Iodine contrast-to-noise ratio improvement at unit dose and contrast media volume reduction in whole-body photon-counting CT. Eur J Radiol 126:108909. https://doi.org/10.1016/j.ejrad.2020.108909

    Article  CAS  PubMed  Google Scholar 

  25. Higashigaito K et al (2023) CT angiography of the aorta using photon-counting detector CT with reduced contrast media volume. Radiol Cardiothorac Imaging 5(1):e220140. https://doi.org/10.1148/ryct.220140

    Article  PubMed  PubMed Central  Google Scholar 

  26. Amato C et al (2020) Potential of contrast agents based on high‑Z elements for contrast-enhanced photon-counting computed tomography. Med Phys. https://doi.org/10.1002/mp.14519

    Article  PubMed  Google Scholar 

  27. Kim J et al (2018) Assessment of candidate elements for development of spectral photon-counting CT specific contrast agents. Sci Rep 8(1):12119. https://doi.org/10.1038/s41598-018-30570-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Roessl E, Proksa R (2007) K‑edge imaging in x‑ray computed tomography using multi-bin photon counting detectors. Phys Med Biol 52(15):4679–4696. https://doi.org/10.1088/0031-9155/52/15/020

    Article  CAS  PubMed  Google Scholar 

  29. Roessl E, Brendel B, Engel K‑J, Schlomka J‑P, Thran A, Proksa R (2011) Sensitivity of photon-counting based K‑edge imaging in X‑ray computed tomography. IEEE Trans Med Imaging 30(9):1678–1690. https://doi.org/10.1109/TMI.2011.2142188

    Article  PubMed  Google Scholar 

  30. He P, Wei B, Cong W, Wang G (2012) Optimization of K‑edge imaging with spectral CT: Optimization of K‑edge imaging. Med Phys 39(11):6572–6579. https://doi.org/10.1118/1.4754587

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang Z et al (2021) An optimized K‑edge signal extraction method for K‑edge decomposition imaging using a photon counting detector. Front Phys 8:601623. https://doi.org/10.3389/fphy.2020.601623

    Article  Google Scholar 

  32. Nilsson H‑E, Frojdh C, Dubaric E (2003) Monte Carlo simulation of charge sharing effects in silicon and GaAs photon counting X‑ray imaging detectors. In: 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515), Portland, OR, USA, Bd. 2, S 1401–1404 https://doi.org/10.1109/NSSMIC.2003.1351955

    Chapter  Google Scholar 

  33. Taguchi K et al (2011) Modeling the performance of a photon counting x‑ray detector for CT: Energy response and pulse pileup effects: A photon counting x‑ray detector and the models. Med Phys 38(2):1089–1102. https://doi.org/10.1118/1.3539602

    Article  PubMed  PubMed Central  Google Scholar 

  34. Badea CT, Clark DP, Holbrook M, Srivastava M, Mowery Y, Ghaghada KB (2019) Functional imaging of tumor vasculature using iodine and gadolinium-based nanoparticle contrast agents: a comparison of spectral micro-CT using energy integrating and photon counting detectors. Phys Med Biol 64(6):65007. https://doi.org/10.1088/1361-6560/ab03e2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Symons R et al (2017) Photon-counting CT for simultaneous imaging of multiple contrast agents in the abdomen: An in vivo study. Med Phys 44(10):5120–5127. https://doi.org/10.1002/mp.12301

    Article  PubMed  PubMed Central  Google Scholar 

  36. Si-Mohamed S et al (2018) Multicolour imaging with spectral photon-counting CT: a phantom study. Eur Radiol Exp 2(1):34. https://doi.org/10.1186/s41747-018-0063-4

    Article  PubMed  PubMed Central  Google Scholar 

  37. Symons R et al (2017) Dual-contrast agent photon-counting computed tomography of the heart: initial experience. Int J Cardiovasc Imaging 33(8):1253–1261. https://doi.org/10.1007/s10554-017-1104-4

    Article  PubMed  Google Scholar 

  38. Muenzel D et al (2017) Simultaneous dual-contrast multi-phase liver imaging using spectral photon-counting computed tomography: a proof-of-concept study. Eur Radiol Exp 1(1):25. https://doi.org/10.1186/s41747-017-0030-5

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ren L, Huber N, Rajendran K, Fletcher JG, McCollough CH, Yu L (2022) Dual-contrast biphasic liver imaging with iodine and gadolinium using photon-counting detector computed tomography: an exploratory animal study. Invest Radiol 57(2):122–129. https://doi.org/10.1097/RLI.0000000000000815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ren L, Rajendran K, McCollough CH, Yu L (2019) Radiation dose efficiency of multi-energy photon-counting-detector CT for dual-contrast imaging. Phys Med Biol 64(24):245003. https://doi.org/10.1088/1361-6560/ab55bf

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Sawall.

Ethics declarations

Interessenkonflikt

S. Sawall gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawall, S. Neue Kontrastmittel für die photonenzählende Computertomographie. Radiologie 63, 507–512 (2023). https://doi.org/10.1007/s00117-023-01135-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-023-01135-6

Schlüsselwörter

Keywords

Navigation