Skip to main content

Advertisement

Log in

Aortenklappenstenose im MRT mit Dynamik und 3D

Functional cardiac MRI for assessment of aortic valve disease

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Erworbene Erkrankungen der Aortenklappe wie die Aortenklappenstenose zeigen mit zunehmender Alterungstendenz unserer Gesellschaft eine ansteigende Inzidenz. Die Erfassung über die reine Klappenmorphologie hinausgehender hämodynamischer Parameter hat ein wichtiges zukünftiges Potenzial zur Schweregradeinschätzung. Die MRT erlaubt eine nichtinvasive und räumlich flexible Darstellung der Aortenklappe sowie ihrer benachbarten anatomischen Strukturen (linksventrikulärer Ausflusstrakt/LVOT, Aorta ascendens). Darüber hinaus ist eine Bestimmung funktioneller hämodynamischer Parameter wie Flussgeschwindigkeiten und effektiven Öffnungsflächen (EÖF) möglich. Der neue Ansatz einer seriellen Planimetrie geschwindigkeitskodierter MRT-Sequenzen (Velocity-encoding- [VENC-]MRT) erlaubt die Größenbestimmung flussdurchströmter kardialer Strukturen und die Aufzeichnung ihrer dynamischen Größenveränderung während der Systole. Zusätzlich ermöglicht die subvalvuläre Anwendung der VENC-MRT die klinisch wichtige exakte Flächenbestimmung des LVOT und berücksichtigt dabei seine spezifische exzentrische Konfiguration und systolische Formvariabilität.

Abstract

Aortic valve disease shows a rising incidence with the increasing mean age of Western populations. The detection of hemodynamic parameters, which transcends the mere assessment of valve morphology, has an important future potential concerning classification of the severity of disease. MRI allows a non-invasive and a spatially flexible view of the aortic valve and the adjacent anatomic region, left ventricular outflow tract (LVOT) and ascending aorta. Moreover, the technique allows the determination of functional hemodynamic parameters, such as flow velocities and effective orifice areas. The new approach of a serial systolic planimetry velocity-encoded MRI sequence (VENC-MRI) facilitates the sizing of blood-filled cardiac structures with the registration of changes in magnitude during systole. Additionally, the subvalvular VENC-MRI measurements improve the clinically important exact determination of the LVOT area with respect to its specific eccentric configuration and its systolic deformity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8

Literatur

  1. Akat K, Borggrefe M, Kaden JJ (2009) Aortic valve calcification: basic science to clinical practice. Heart 95:616–623

    Article  CAS  PubMed  Google Scholar 

  2. Beauchesne LM, Dekemp R, Chan KL et al (2003) Temporal variations in effective orifice area during ejection in patients with valvular aortic stenosis. J Am Soc Echocardiogr 16:958–964

    Article  PubMed  Google Scholar 

  3. Bonow RO, Carabello BA, Chatterjee K et al (2006) ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing Committee to Revise the 1998 guidelines for the management of patients with valvular heart disease) developed in collaboration with the Society of Cardiovascular Anesthesiologists endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. J Am Coll Cardiol 48:e1–148

    Article  PubMed  Google Scholar 

  4. Burgstahler C, Kunze M, Loffler C et al (2006) Assessment of left ventricular outflow tract geometry in non-stenotic and stenotic aortic valves by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 8:825–829

    Article  PubMed  Google Scholar 

  5. Debl K, Djavidani B, Seitz J et al (2005) Planimetry of aortic valve area in aortic stenosis by magnetic resonance imaging. Invest Radiol 40:631–636

    Article  PubMed  Google Scholar 

  6. Doddamani S, Grushko MJ, Makaryus AN et al (2009) Demonstration of left ventricular outflow tract eccentricity by 64-slice multi-detector CT. Int J Cardiovasc Imaging 25:175–181

    Article  PubMed  Google Scholar 

  7. Eichenberger AC, Jenni R, von Schulthess GK (1993) Aortic valve pressure gradients in patients with aortic valve stenosis: quantification with velocity-encoded cine MR imaging. AJR Am J Roentgenol 160:971–977

    CAS  PubMed  Google Scholar 

  8. Feuchtner GM, Dichtl W, Friedrich GJ et al (2006) Multislice computed tomography for detection of patients with aortic valve stenosis and quantification of severity. J Am Coll Cardiol 47:1410–1417

    Article  PubMed  Google Scholar 

  9. Gorlin R, Gorlin SG (1951) Hydraulic formula for calculation of the area of the stenotic mitral valve, other cardiac valves, and central circulatory shunts. Am Heart J 41:1–29

    Article  CAS  PubMed  Google Scholar 

  10. Handke M, Heinrichs G, Beyersdorf F et al (2003) In vivo analysis of aortic valve dynamics by transesophageal 3-dimensional echocardiography with high temporal resolution. J Thorac Cardiovasc Surg 125:1412–1419

    Article  PubMed  Google Scholar 

  11. Khaw AV, von Bardeleben RS, Strasser C et al (2009) Direct measurement of left ventricular outflow tract by transthoracic real-time 3D-echocardiography increases accuracy in assessment of aortic valve stenosis. Int J Cardiol 136:64–71

    Article  PubMed  Google Scholar 

  12. Leborgne L, Tribouilloy C, Otmani A et al (1998) Comparative value of Doppler echocardiography and cardiac catheterization in the decision to operate on patients with aortic stenosis. Int J Cardiol 65:163–168

    Article  CAS  PubMed  Google Scholar 

  13. Lindroos M, Kupari M, Heikkila J et al (1993) Prevalence of aortic valve abnormalities in the elderly: an echocardiographic study of a random population sample. J Am Coll Cardiol 21:1220–1225

    Article  CAS  PubMed  Google Scholar 

  14. Lotz J (2007) Flow measurements in cardiac MRI. Radiologe 47:333–341

    Article  CAS  PubMed  Google Scholar 

  15. Shavelle DM, Buljabasic N, Takasu J et al (2006) Validation of the severity index by cardiac catheterization and Doppler echocardiography in patients with aortic sclerosis and stenosis. Cardiovasc Ultrasound 4:12

    Article  PubMed  Google Scholar 

  16. Tardif JC, Rodrigues AG, Hardy JF et al (1997) Simultaneous determination of aortic valve area by the Gorlin formula and by transesophageal echocardiography under different transvalvular flow conditions. Evidence that anatomic aortic valve area does not change with variations in flow in aortic stenosis. J Am Coll Cardiol 29:1296–1302

    Article  CAS  PubMed  Google Scholar 

  17. Weidemann F, Herrmann S, Stork S et al (2009) Impact of myocardial fibrosis in patients with symptomatic severe aortic stenosis. Circulation 120:577–584

    Article  CAS  PubMed  Google Scholar 

  18. Weininger M, Ritter CO, Lengenfelder B et al (2008) Comparison of non-invasive MRI approaches to invasive hemodynamic measurements in the assessment of valvular aortic stenosis. Eur Radiol 18 [suppl 1]:331, abstr

Download references

Interessenkonfilkt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Sagmeister or M. Beer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sagmeister , F., Herrmann, S., Ritter, C. et al. Aortenklappenstenose im MRT mit Dynamik und 3D. Radiologe 50, 541–547 (2010). https://doi.org/10.1007/s00117-010-1988-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-010-1988-7

Schlüsselwörter

Keywords

Navigation