Skip to main content

Advertisement

Log in

MRT-basierte tridirektionale Flussbildgebung

Aufnahme und 3D-Analyse von Strömungen in der thorakalen Aorta

MR-based tridirectional flow imaging

Acquisition and 3D analysis of flows in the thoracic aorta

  • Leitthema: Aorta
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Die tridirektionale MRT-Flussbildgebung ist ein junges Verfahren, das die etablierte Phasenkontrastflussmessung um die vektorielle Geschwindigkeitskodierung, also Kodierung in allen 3 Raumrichtungen, erweitert. Moderne Sequenzen erfassen Geschwindigkeitsvektorfelder mit räumlich hoher Auflösung von 1–3 mm und über den Herzschlag mit einer zeitlichen Auflösung von 20–50 ms. Dank Navigatortechnik kann die gesamte thorakale Aorta innerhalb von ca. 20 min in freier Atmung aufgenommen werden. Die anschließende rechnergestützte Datenaufbereitung umfasst die automatische Korrektur von Aliasingeffekten, Wirbelströmen, Gradientenfeldinhomogenitäten und Maxwell-Termen.

Die gewonnenen Geschwindigkeitsdaten werden dreidimensional als Vektorpfeile, Strom- oder Bahnlinien visualisiert. Die gleichzeitige Darstellung morphologischer Schnittebenen und der Oberfläche des Gefäßlumens in 3D unterstützt die räumliche und anatomische Orientierung. Weiterhin lassen sich quantitative Größen wie Blutflussvolumen und -geschwindigkeit, Wirbelstärke oder Gefäßwandschubspannung bestimmen.

Moderne Softwaresysteme unterstützen die integrierte flussbasierte Analyse typischer aortaler Pathologien, wie Aneurysmen und Aorteninsuffizienz. Inwieweit die zusätzlichen Informationen besseren Therapieentscheidungen dienlich sind, müssen klinische Studien zeigen.

Abstract

Tridirectional MR flow imaging is a novel method that extends the well-established technique of phase-contrast flow measurement by vectorial velocity encoding, i.e., by encoding in all three spatial directions. Modern sequence protocols allow the acquisition of velocity vector fields with high spatial resolutions of 1–3 mm and temporal resolutions of 20–50 ms over the heart cycle. Using navigating techniques, data on the entire thoracic aorta can be acquired within about 20 min in free breathing. The subsequent computer-based data processing includes automatic correction of aliasing effects, eddy currents, gradient field inhomogeneities, and Maxwell terms.

The data can be visualized in three dimensions using vector arrows, streamlines, or particle traces. The parallel visualization of morphological slices and of the surface of the vascular lumen in 3D enhances spatial and anatomical orientation. Furthermore, quantitative values such as blood flow velocity and volume, vorticity, and vessel wall shear stress can be determined.

Modern software systems support the integrated flow-based analysis of typical aortic pathologies such as aneurysms and aortic insufficiency. To what extent this additional information will help us in making better therapeutic decisions needs to be studied in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8

Literatur

  1. Atkinson DJ, Edelman RR (1991) Cineangiography of the heart in a single breath hold with a segmented turboFLASH sequence. Radiology 178: 357–360

    PubMed  CAS  Google Scholar 

  2. Bailes DR, Gilderdale DJ, Bydder GM et al. (1985) Respiratory ordered phase encoding (ROPE): a method for reducing respiratory motion artefacts in MR imaging. J Comput Assist Tomogr 9: 835–838

    Article  PubMed  CAS  Google Scholar 

  3. Bernstein MA, Zhou XJ, Polzin JA et al. (1998) Concomitant gradient terms in phase contrast MR: analysis and correction. Magn Reson Med 39: 300–308

    Article  PubMed  CAS  Google Scholar 

  4. Bogren HG, Buonocore MH (1999) 4D magnetic resonance velocity mapping of blood flow patterns in the aorta in young vs. elderly normal subjects. J Magn Reson Imaging 10: 861–869

    Article  PubMed  CAS  Google Scholar 

  5. Bogren HG, Buonocore MH, Valente RJ (2004) Four-dimensional magnetic resonance velocity mapping of blood flow patterns in the aorta in patients with atherosclerotic coronary artery disease compared to age-matched normal subjects. J Magn Reson Imaging 19: 417–427

    Article  PubMed  Google Scholar 

  6. Cheng C, Tempel D, van Haperen R et al. (2006) Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation 113: 2744–2753

    Article  PubMed  Google Scholar 

  7. Davies PF (1995) Flow-mediated endothelial mechanotransduction. Physiol Rev 75: 519–560

    PubMed  CAS  Google Scholar 

  8. Ehman RL, Felmlee JP (1989) Adaptive technique for high-definition MR imaging of moving structures. Radiology 173: 255–263

    PubMed  CAS  Google Scholar 

  9. Fayad ZA, Nahar T, Fallon JT et al. (2000) In vivo magnetic resonance evaluation of atherosclerotic plaques in the human thoracic aorta: a comparison with transesophageal echocardiography. Circulation 101: 2503–2509

    PubMed  CAS  Google Scholar 

  10. Frydrychowicz A, Harloff A, Jung B et al. (2007) Time-resolved 3D MR flow analysis at 3T: visualization of normal and pathological aortic vascular hemodynamics. J Comput Assist Tomogr 31: 9–15

    Article  PubMed  Google Scholar 

  11. Frydrychowicz A, Markl M, Harloff A et al. (2007) Flow-sensitive in-vivo 4D MR imaging at 3T for the analysis of aortic hemodynamics and derived vessel wall parameters. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 179: 463–472

    Article  PubMed  CAS  Google Scholar 

  12. Frydrychowicz A, Schlensak C, Stalder A et al. (2007) Ascending-descending aortic bypass surgery in aortic arch coarctation: four-dimensional magnetic resonance flow analysis. J Thorac Cardiovasc Surg 133: 260–262

    Article  PubMed  Google Scholar 

  13. Frydrychowicz A, Weigang E, Harloff A et al. (2006) Images in cardiovascular medicine. Time-resolved 3-dimensional magnetic resonance velocity mapping at 3T reveals drastic changes in flow patterns in a partially thrombosed aortic arch. Circulation 113: e460–e461

    Article  PubMed  Google Scholar 

  14. Haacke EM, Li D, Kaushikkar S (1995) Cardiac MR imaging: principles and techniques. Top Magn Reson Imaging 7: 200–217

    Article  PubMed  CAS  Google Scholar 

  15. Holland AE, Goldfarb JW, Edelman RR (1998) Diaphragmatic and cardiac motion during suspended breathing: preliminary experience and implications for breath-hold MR imaging. Radiology 209: 483–489

    PubMed  CAS  Google Scholar 

  16. Kilner PJ, Yang GZ, Wilkes AJ et al. (2000) Asymmetric redirection of flow through the heart. Nature 404: 759–761

    Article  PubMed  CAS  Google Scholar 

  17. Ku DN, Giddens DP, Zarins CK, Glagov S (1985) Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5: 293–302

    PubMed  CAS  Google Scholar 

  18. Kvitting JP, Ebbers T, Wigström L et al. (2004) Flow patterns in the aortic root and the aorta studied with time-resolved, 3-dimensional, phase-contrast magnetic resonance imaging: implications for aortic valve-sparing surgery. J Thorac Cardiovasc Surg 127: 1602–1607

    Article  PubMed  Google Scholar 

  19. Lima JA, Desai MY (2004) Cardiovascular magnetic resonance imaging: current and emerging applications. J Am Coll Cardiol 44: 1164–1171

    Article  PubMed  Google Scholar 

  20. Markl M, Bammer R, Alley MT et al. (2003) Generalized reconstruction of phase contrast MRI: analysis and correction of the effect of gradient field distortions. Magn Reson Med 50: 791–801

    Article  PubMed  CAS  Google Scholar 

  21. Markl M, Draney MT, Miller DC et al. (2005) Time-resolved three-dimensional magnetic resonance velocity mapping of aortic flow in healthy volunteers and patients after valve-sparing aortic root replacement. J Thorac Cardiovasc Surg 130: 456–463

    Article  PubMed  Google Scholar 

  22. Markl M, Harloff A, Bley TA et al. (2007) Time-resolved 3D MR velocity mapping at 3T: improved navigator-gated assessment of vascular anatomy and blood flow. J Magn Reson Imaging 25: 824–831

    Article  PubMed  Google Scholar 

  23. McVeigh ER (1996) MRI of myocardial function: motion tracking techniques. Magn Res Imaging 14: 137–150

    Article  CAS  Google Scholar 

  24. Merickel MB, Berr S, Spetz K et al. (1993) Noninvasive quantitative evaluation of atherosclerosis using MRI and image analysis. Arterioscler Thromb 13: 1180–1186

    PubMed  CAS  Google Scholar 

  25. Mohrs OK, Petersen SE, Erkapic D et al. (2007) Dynamic contrast-enhanced MRI before and after transcatheter occlusion of patent foramen ovale. AJR Am J Roentgenol 188: 844–849

    Article  PubMed  Google Scholar 

  26. Nayler GL, Firmin DN, Longmore DB (1986) Blood flow imaging by cine magnetic resonance. J Comput Assist Tomogr 10: 715–722

    Article  PubMed  CAS  Google Scholar 

  27. Oshinski JN, Ku DN, Mukundan S jr et al. (1995) Determination of wall shear stress in the aorta with the use of MR phase velocity mapping. J Magn Reson Imaging 5: 640–647

    Article  PubMed  CAS  Google Scholar 

  28. Pelc NJ, Herfkens RJ, Shimakawa A, Enzmann DR (1991) Phase contrast cine magnetic resonance imaging. Magn Reson Q 7: 229–254

    PubMed  CAS  Google Scholar 

  29. Scheffler K, Lehnhardt S (2003) Principles and applications of balanced SSFP techniques. Eur Radiol 13: 2409–2418

    Article  PubMed  Google Scholar 

  30. Tyszka JM, Laidlaw DH, Asa JW, Silverman JM (2000) Three-dimensional, time-resolved (4D) relative pressure mapping using magnetic resonance imaging. J Magn Reson Imaging 12: 321–329

    Article  PubMed  CAS  Google Scholar 

  31. Unterhinninghofen R, Albers J, Hosch W et al. (2005) Flow quantification from time-resolved MRI vector fields. Proc CARS

  32. Unterhinninghofen R, Ley S, Zaporozhan J et al. (2006) A versatile tool for flow analysis in 3D-phase-contrast magnetic resonance imaging. Int J CARS [suppl 1]: 111–113

  33. Vulliemoz S, Stergiopulos N, Meuli R (2002) Estimation of local aortic elastic properties with MRI. Magn Reson Med 47: 649–654

    Article  PubMed  Google Scholar 

  34. Walker PG, Cranney GB, Scheidegger MB et al. (1993) Semiautomated method for noise reduction and background phase error correction in MR phase velocity data. J Magn Reson Imaging 3: 521–530

    Article  PubMed  CAS  Google Scholar 

  35. Wedding KL, Draney MT, Herfkens RJ et al. (2002) Measurement of vessel wall strain using cine phase contrast MRI. J Magn Reson Imaging 15: 418–428

    Article  PubMed  Google Scholar 

  36. Wigstrom L, Ebbers T, Fyrenius A et al. (1999) Particle trace visualization of intracardiac flow using time-resolved 3D phase contrast MRI. Magn Reson Med 41: 793–799

    Article  PubMed  CAS  Google Scholar 

  37. Yuan C, Kerwin WS (2004) MRI of atherosclerosis. J Magn Reson Imaging 19: 710–719

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Unterhinninghofen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unterhinninghofen, R., Ley, S., Frydrychowicz, A. et al. MRT-basierte tridirektionale Flussbildgebung. Radiologe 47, 1012–1020 (2007). https://doi.org/10.1007/s00117-007-1577-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-007-1577-6

Schlüsselwörter

Keywords

Navigation