Skip to main content
Log in

Magnetresonanztomographie

Sequenzakronyme und weitere Kürzel in der MR-Bildgebung

  • Weiterbildung. Zertifizierte Fortbildung
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Die magnetresonanztomographische Bildgebung (MRI) gewinnt in der klinischen Routine zunehmend an Bedeutung. Die Vielfalt der gewebespezifisch bildkontrastbestimmenden Parameter spiegelt sich wider in der Vielzahl der MR-Bildgebungssequenzen. Diese können unterteilt werden in Gradientenecho- und Spinechosequenzen. Innerhalb dieser Gruppen ist eine weitere Unterteilung möglich in Einfachecho-, Multiecho- und Single-Shot-Techniken. Jede dieser Gruppen ist mit einem Präparationsschema für die longitudinale Magnetisierung kombinierbar. Innerhalb der Gruppen gibt es wiederum Hybridtechniken, die sowohl Gradientenechos als auch Spinechos verwenden. Universitäre Einrichtungen und Hersteller haben für die gleichen Sequenztechniken oft unterschiedliche Namen und Abkürzungen. Im vorliegenden Beitrag werden die verschiedenen Abkürzungen schematisch eingeordnet, das Grundprinzip der Datenakquisition erläutert und Hinweise auf potenzielle klinische Anwendungen gegeben. Neben den sequenzspezifischen Akronymen haben sich in letzter Zeit neue Abkürzungen im Zusammenhang mit "parallelen" Akquisitionsschemata ergeben. Unter parallelen Akquisitionstechniken versteht man die Verwendung mehrerer Oberflächenspulen und deren lokale Empfindlichkeit sowie die Verwertung dieser zusätzlichen Rauminformation, um die Messzeit zu verkürzen.

Abstract

The role of magnetic resonance imaging in clinical routine is still increasing. The large number of possible MR acquisition schemes reflects the variety of tissue-dependent parameters that may influence the contrast within the image. Those schemes can be categorized into gradient echo and spin echo techniques. Within these groups, further sorting can be done to differentiate between single-echo, multi-echo, and single-shot techniques. Each of these techniques can be combined with preparation schemes for modifying the longitudinal magnetization. Hybrids are found between the groups, which are those techniques that utilize spin echoes as well as gradient echoes. Academic groups as well as vendors often have different sequence acronyms for the same acquisition scheme. This contribution will sort these sequence acronyms into the previously mentioned scheme. The basic principle of the data acquisition is elaborated on and hints are given for potential clinical applications. Besides the sequence-specific acronyms, new abbreviations have surfaced recently in conjunction with "parallel acquisition techniques." The latter means the utilization of multiple surface coils where the position and the sensitivity profile of the coils provide additional spatial information, allowing the application of reduced matrixes leading to a shorter measurement time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10
Abb. 11
Abb. 12
Abb. 13
Abb. 14
Abb. 15a,b
Abb. 16
Abb. 17a,b
Abb. 18
Abb. 19
Abb. 20a–c

Literatur

  1. Allkemper T, Reimer P, Schuierer G, Peters PE (1998) Study of susceptibility-induced artefacts in GRASE with different echo train length. Eur Radiol 8:834–838

    CAS  PubMed  Google Scholar 

  2. Bluml S, Schad LR, Stepanow B, Lorenz WJ (1993) Spin-lattice relaxation time measurement by means of a turboFLASH technique. Magn Reson Med 30:289–295

    CAS  PubMed  Google Scholar 

  3. Brant-Zawadzki M, Gillan GD, Nitz WR (1992) MP RAGE: a three-dimensional, T1-weighted, gradient-echo sequence—initial experience in the brain. Radiology 182:769–775

    CAS  PubMed  Google Scholar 

  4. Bruder H, Fischer H, Graumann R, Deimling M (1988) A new steady-state imaging sequence for simultaneous acquisition of two MR images with clearly different contrasts. Magn Reson Med 7:35–42

    CAS  PubMed  Google Scholar 

  5. Constable RT, Gore JC (1992) The loss of small objects in variable TE imaging: implications for FSE, RARE, and EPI. Magn Reson Med 28:9–24

    CAS  PubMed  Google Scholar 

  6. Constable RT, Smith RC, Gore JC (1992) Signal-to-noise and contrast in fast spin echo (FSE) and inversion recovery FSE imaging. J Comput Assist Tomogr 16:41–47

    CAS  PubMed  Google Scholar 

  7. Crawley AP, Wood ML, Henkelman RM (1988) Elimination of transverse coherences in FLASH MRI. Magn Reson Med 8:248–260

    CAS  PubMed  Google Scholar 

  8. Deimling M, Laub G (1989) Constructive interference in steady state (CISS) for motion sensitivity reduction. In: Book of abstracts, procceedings of the SMRM 1989; 2:842

  9. Du YP, Parker DL, Davis WL, Cao G (1994) Reduction of partial-volume artifacts with zero-filled interpolation in three-dimensional MR angiography.J Magn Reson Imaging 4:733–741

    CAS  PubMed  Google Scholar 

  10. Duerk JL, Lewin JS, Wendt M, Petersilge C (1998) Remember true FISP? A high SNR, near 1-second imaging method for T2-like contrast in interventional MRI at.2 T. J Magn Reson Imaging 8:203–208

    CAS  PubMed  Google Scholar 

  11. Dumoulin CL, Hart HR (1986) Magnetic resonance angiography. Radiology 161:717ff

    CAS  PubMed  Google Scholar 

  12. Edelstein WA, Bottomley PA et al. (1983) Signal, noise and contrast in nuclear magnetic (NMR) imaging. J Comp Assist Tomogr 3:391–401

    Google Scholar 

  13. Feinberg DA, Oshio K (1991) GRASE (gradient- and spin-echo) MR imaging: a new fast clinical imaging technique. Radiology 181:597–602

    CAS  PubMed  Google Scholar 

  14. Foo KFT, Bernstein MA, Holsinger AE et al. (1990) Ultra-fast spoiled gradient recalled (SPGR) image acquisition. In: Works in progress book of abstracts of the SMRM 1990; 1308

  15. Griswold MA, Jakob PM, Heidemann RM et al. (2002) Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA). Magn Reson Med 47:1202–1210

    Article  PubMed  Google Scholar 

  16. Haacke EM, Wielopolski PA, Tkach JA (1991) A comprehensive technical review of short TR, fast, magnetic resonance imaging. Rev Magn Reson Med 3:53–170

    Google Scholar 

  17. Haacke EM, Wielopolski PA, Tkach JA (1991) A Comprehensive technical review of short TR, fast, magnetic resonance imaging. Rev Magn Reson Med 3:53–170

    Google Scholar 

  18. Haase A, Frahm J, Mathaei D et al. (1986) FLASH imaging. Rapid imaging using low flip-angle pulses. J Magn Reson 67:256–266

    Google Scholar 

  19. Haase A, Matthaei D, Bartkowski R et al. (1989) Inversion recovery snapshot FLASH MR imaging. J Comput Assist Tomogr 13:1036–1040

    CAS  PubMed  Google Scholar 

  20. Hajnal JV, De Coene B, Lewis PD et al. (1992) High signal regions in normal white matter shown by heavily T2-weighted CSF nulled IR sequences. J Comput Assist Tomogr 16:506–513

    CAS  PubMed  Google Scholar 

  21. Hardy PA, Thomasson D, Recht MP, Piraino D (1996) Optimization of dual echo in the steady state (DESS) free-precession sequence for imaging cartilage. J Magn Reson Imaging 6:329–335

    CAS  PubMed  Google Scholar 

  22. Hashemi RH, Bradley WG Jr, Chen DY et al. (1995) Suspected multiple sclerosis: MR imaging with a thin-section fast FLAIR pulse sequence. Radiology 196:505–510

    CAS  PubMed  Google Scholar 

  23. Hennig J, Nauerth A, Friedburg H, Ratzel D (1984) Ein neues Schnellbildverfahren für die Kernspintomographie. Radiologe 24:579–580

    CAS  PubMed  Google Scholar 

  24. Kiefer B, Grässner J, Hausmann R (1994) Image acquisition in a second with half Fourier acquired single shot turbo spin echo. J Magn Reson Imaging 4:86

    Google Scholar 

  25. Laub GA, Kaiser WA (1988) MR angiography with gradient motion refocusing. J Comput Assist Tomogr 12:377–382

    CAS  PubMed  Google Scholar 

  26. Lauterbur PC (1973) Image formation by induced local interaction: examples employing nuclear magnetic resonance. Nature 243:190–191

    Google Scholar 

  27. Mansfield P (1977) Multi-planar image formation using NMR spin-echoes. J Phys C 10:L55–L58

    CAS  Google Scholar 

  28. Margosian P, Schmitt F, Purdy D (1986) Faster MR imaging: imaging with half the data. Health Care Instrum 1:195–197

    Google Scholar 

  29. Melhem ER, Itoh R, Folkers PJ (2001) Cervical spine: three-dimensional fast spin-echo mr imaging-improved recovery of longitudinal magnetization with driven equilibrium pulse. Radiology. 218:283–288

    Google Scholar 

  30. Melki PS, Mulkern RV, Panych LP, Jolesz FA (1991) Comparing the FAISE method with conventional dual-echo sequences. J Magn Reson Imaging 1:319–326

    CAS  PubMed  Google Scholar 

  31. Mugler JP, Brookeman JR (1990) Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med 15:152–157

    PubMed  Google Scholar 

  32. Mugler JP, Brookeman JR (1993) Theoretical analysis of gadopentetate dimeglumine enhancement in T1-weighted imaging of the brain: comparison of two-dimensional spin-echo and three-dimensional gradient-echo sequences. J Magn Reson Imaging 3:761–769

    PubMed  Google Scholar 

  33. Nitz WR, Lenhart M, Volk M et al. (1999) MR Angiographie. Methoden and Klinische Anwendungen. Radiologe 39:495–506

    Article  CAS  PubMed  Google Scholar 

  34. Oppelt A, Graumann R, Barfuss H et al. (1986) FISP—A new fast MRI sequence. Electromedica 54:15–18

    Google Scholar 

  35. Poustchi-Amin M, Mirowitz SA, Brown JJ et al. (2001) Principles and applications of echo-planar imaging: a review for the general radiologist. RadioGraphics 21:767–779

    CAS  PubMed  Google Scholar 

  36. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962

    Article  CAS  PubMed  Google Scholar 

  37. Reimer P, Allkemper T, Schuierer G, Peters PE (1996) Brain imaging: reduced sensitivity of RARE-derived techniques to susceptibility effects. J Comput Assist Tomogr 20:201–205

    Article  CAS  PubMed  Google Scholar 

  38. Rofsky NM, Lee VS, Laub G et al. (1999) Abdominal MR imaging with a volumetric interpolated breath-hold examination. Radiology 212:876–884

    CAS  PubMed  Google Scholar 

  39. Schaible R, Textor J, Kreft B et al. (2001) Value of selective MIP reconstructions in respiratory triggered 3D TSE MR-cholangiography on a workstation in comparison with MIP standard projections and single-shot MRCP. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 173:416–423

    Article  CAS  PubMed  Google Scholar 

  40. Sechtem U, Pflugfelder PW, White RD et al. (1987) Cine MR imaging: potential for the evaluation of cardiovascular function. Am J Roentgenol 148:239–246

    CAS  Google Scholar 

  41. Smith RC, Constable RT, Reinhold C et al. (1994) Fast spin echo STIR imaging. J Comput Assist Tomogr 18:209–213

    CAS  PubMed  Google Scholar 

  42. Sodickson DK, Manning WJ (1997) Simultaneous Acquisition of Spatial Harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603

    CAS  PubMed  Google Scholar 

  43. van der Meulen P, Groen JP, Cuppen JJM (1985) Very fast MR imaging by field echoes and small angle excitation. Magn Reson Imaging 3:297–299

    PubMed  Google Scholar 

  44. van Rugge FP, Boreel JJ, van der Wall EE et al. (1991) Cardiac first-pass and myocardial perfusion in normal subjects assessed by sub-second Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 15:959–965

    PubMed  Google Scholar 

  45. Wang Y, Lee HM, Khilnani NM et al. (1998) Bolus-chase MR digital subtraction angiography in the lower extremities. Radiology 207:263–269

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. R. Nitz.

Additional information

Interessenkonflikt

Dr. Wolfgang R. Nitz ist Mitarbeiter der Siemens AG, Medical Solutions, Erlangen, MR-Applikationsentwicklung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nitz, W.R. Magnetresonanztomographie. Radiologe 43, 745–766 (2003). https://doi.org/10.1007/s00117-003-0946-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-003-0946-z

Schlüsselwörter

Keywords

Navigation