Skip to main content
Log in

Parkinson- und Alzheimer-Erkrankung als Systemerkrankungen

Parkinson’s and Alzheimer’s disease as system-wide neurodegenerative disorders

  • Leitthema
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Neurodegenerative Erkrankungen wie der Morbus Parkinson und Morbus Alzheimer sind gekennzeichnet durch zelluläre Veränderungen, die der klinischen Manifestation jahrzehntelang vorausgehen können, und durch unterschiedliche Subtypen und Phänotypen der Krankheitsmanifestation. Beide Erkrankungen werden zunehmend als Systemerkrankungen verstanden, bei denen immunologische und neuroinflammatorische Mechanismen eine bedeutende Rolle spielen.

Ziel der Arbeit

Übersicht über Krankheitsverlauf, Subtypen der Krankheitsmanifestation und Klassifikation im Kontext immunologischer und neuroinflammatorischer Mechanismen.

Material und Methoden

Literaturrecherche und Einbeziehung von Expertenmeinungen.

Ergebnisse

Die Akkumulation von fehlgefalteten Proteinen wie β‑Amyloid und α‑Synuklein im Rahmen des neurodegenerativen Prozesses ist aktuell Basis der biologischen Klassifikationen. In ihrer Verteilung und Ausprägung hilft sie auch für das Verständnis des Verlaufs und bei der Differenzierung einzelner Subtypen. Die Akkumulation induziert Reaktionen des angeborenen Immunsystems, die zu einer Aktivierung von Mikroglia und zur Freisetzung von Entzündungsmediatoren wie Zytokinen und Chemokinen führen. Dies kann eine weitere Ausbreitung der Neurodegeneration und eine weitere Akkumulation intrazellulärer Tau-assoziierter Neurofibrillen („tangles“) nach sich ziehen. Zunehmend gibt es Belege, das auch das adaptive Immunsystem mit einer möglichen Beteiligung von Autoantikörpern oder autoantigenspezifischen T‑Zell-Reaktionen am Krankheitsprozess beteiligt ist.

Schlussfolgerung

Neben Fehlfaltung, Aggregation und Akkumulation von Eiweißen im zentralen Nervensystem als Kardinalzeichen neurodegenerativer Erkrankungen spielen immunogene und neuroinflammatorische Mechanismen eine relevante Rolle. Sie könnten wichtige Ziele krankheitsmodifizierender Therapiestrategien sein.

Abstract

Background

Parkinson’s and Alzheimer’s disease (PD/AD) are characterized by cellular pathological changes that precede clinical manifestation and symptom onset by decades (prodromal period) as well as by a heterogeneity of clinical symptoms. Both diseases are recognized as system-wide diseases with organ-transgressing dysregulation and involvement of immunological and neuroinflammatory mechanisms facilitating pathological protein aggregation and neurodegeneration.

Objectives

Overview of natural course, phenotypes and classification of PD/AD with a focus on underlying (system-wide) immunological and neuroinflammatory mechanisms.

Methods

Literature research and consideration of expert opinions.

Results

The accumulation of misfolded proteins such as amyloid‑β and synuclein in the course of neurodegenerative processes forms the basis of the current biological classifications, understanding of course and subtypes. Protein aggregation in PD/AD induces an innate immune response by activating microglia and the release of inflammatory mediators such as cytokines and chemokines and leading to further spread of neurodegeneration and accumulation of intracellular neurofibrillary tangles (NFTs). There is also growing evidence that adaptive immune responses involving auto-antibodies or auto-antigen-specific T‑/B-cell reactions involving tau, amyloid‑β or synuclein might be involved in the disease progression or subtypes of PD/AD.

Conclusions

Both innate and adaptive immune responses seem to be substantially involved in the pathological cascade leading to neurodegeneration in PD/AD and may contribute to disease progression and clinical subtypes. Thus, future targeted interventions should not only focus on protein aggregation but also on neuroinflammatory and immunological mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Albert MS, Dekosky ST, Dickson D et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:270–279

    Article  PubMed  PubMed Central  Google Scholar 

  2. Alvente S, Matteoli G, Molina-Porcel L et al (2022) Pilot study of the effects of chronic intracerebroventricular infusion of human anti-IgLON5 disease antibodies in mice. Cells. https://doi.org/10.3390/cells11061024

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bastiaansen AEM, Van Steenhoven RW, Te Vaarwerk ES et al (2023) Antibodies associated with autoimmune encephalitis in patients with presumed neurodegenerative dementia. Neurol Neuroimmunol Neuroinflamm. https://doi.org/10.1212/NXI.0000000000200137

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bellomo G, De Luca CMG, Paoletti FP et al (2022) α‑Synuclein seed amplification assays for diagnosing synucleinopathies: the way forward. Neurology 99:195–205

    Article  CAS  PubMed  Google Scholar 

  5. Braak H, Del Tredici K (2015) The preclinical phase of the pathological process underlying sporadic Alzheimer’s disease. Brain 138:2814–2833

    Article  PubMed  Google Scholar 

  6. Brosseron F, Maass A, Kleineidam L et al (2022) Soluble TAM receptors sAXL and sTyro3 predict structural and functional protection in Alzheimer’s disease. Neuron 110:1009–1022.e4

    Article  CAS  PubMed  Google Scholar 

  7. Bussian TJ, Aziz A, Meyer CF et al (2018) Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562:578–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Galiano-Landeira J, Torra A, Vila M et al (2020) CD8 T cell nigral infiltration precedes synucleinopathy in early stages of Parkinson’s disease. Brain 143:3717–3733

    Article  PubMed  Google Scholar 

  9. Gelpi E, Höftberger R, Graus F et al (2016) Neuropathological criteria of anti-IgLON5-related tauopathy. Acta Neuropathol 132:531–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Grüter T, Möllers FE, Tietz A et al (2023) Clinical, serological and genetic predictors of response to immunotherapy in anti-IgLON5 disease. Brain 146:600–611

    Article  PubMed  Google Scholar 

  11. Hampel H, Cummings J, Blennow K et al (2021) Developing the ATX(N) classification for use across the Alzheimer disease continuum. Nat Rev Neurol 17:580–589

    Article  PubMed  Google Scholar 

  12. Harms AS, Cao S, Rowse AL et al (2013) MHCII is required for α‑synuclein-induced activation of microglia, CD4 T cell proliferation, and dopaminergic neurodegeneration. J Neurosci 33:9592–9600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Heneka MT, Carson MJ, El Khoury J et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Höglinger GU, Adler CH, Berg D et al (2023) Towards a biological definition of Parkinson’s disease. Preprints. https://doi.org/10.20944/preprints202304.0108.v1

    Article  Google Scholar 

  15. Holstege H, Hulsman M, Charbonnier C et al (2022) Exome sequencing identifies rare damaging variants in ATP8B4 and ABCA1 as risk factors for Alzheimer’s disease. Nat Genet 54:1786–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Horsager J, Andersen KB, Knudsen K et al (2020) Brain-first versus body-first Parkinson’s disease: a multimodal imaging case-control study. Brain 143:3077–3088

    Article  PubMed  Google Scholar 

  17. Jack CR Jr., Bennett DA, Blennow K et al (2018) NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement 14:535–562

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jack CR Jr., Bennett DA, Blennow K et al (2016) A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 87:539–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jack CR Jr., Knopman DS, Jagust WJ et al (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12:207–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jellinger KA (2020) Pathobiological subtypes of Alzheimer disease. Dement Geriatr Cogn Disord 49:321–333

    Article  PubMed  Google Scholar 

  21. Landa J, Gaig C, Plagumà J et al (2020) Effects of IgLON5 antibodies on neuronal cytoskeleton: a link between autoimmunity and neurodegeneration. Ann Neurol 88:1023–1027

    Article  CAS  PubMed  Google Scholar 

  22. Landa J, Serafim AB, Gaig C et al (2023) Patients’ IgLON5 autoantibodies interfere with IgLON5-protein interactions. Front Immunol 14:1151574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lindestam Arlehamn CS, Dhanwani R, Pham J et al (2020) α‑Synuclein-specific T cell reactivity is associated with preclinical and early Parkinson’s disease. Nat Commun 11:1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Marras C, Chaudhuri KR (2016) Nonmotor features of Parkinson’s disease subtypes. Mov Disord 31:1095–1102

    Article  CAS  PubMed  Google Scholar 

  25. Mckhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:263–269

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mestre TA, Fereshtehnejad SM, Berg D et al (2021) Parkinson’s disease subtypes: critical appraisal and recommendations. J Parkinsons Dis 11:395–404

    Article  PubMed  PubMed Central  Google Scholar 

  27. Poewe W, Seppi K, Tanner CM et al (2017) Parkinson disease. Nat Rev Dis Primers 3:17013

    Article  PubMed  Google Scholar 

  28. Postuma RB, Berg D, Stern M et al (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30:1591–1601

    Article  PubMed  Google Scholar 

  29. Sabater L, Gaig C, Gelpi E et al (2014) A novel non-rapid-eye movement and rapid-eye-movement parasomnia with sleep breathing disorder associated with antibodies to IgLON5: a case series, characterisation of the antigen, and post-mortem study. Lancet Neurol 13:575–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sommer A, Marxreiter F, Krach F et al (2018) Th17 lymphocytes induce neuronal cell death in a human iPSC-based model of Parkinson’s disease. Cell Stem Cell 23:123–131.e6

    Article  CAS  PubMed  Google Scholar 

  31. Sulzer D, Alcalay RN, Garretti F et al (2017) T cells from patients with Parkinson’s disease recognize α‑synuclein peptides. Nature 546:656–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Venegas C, Kumar S, Franklin BS et al (2017) Microglia-derived ASC specks cross-seed amyloid‑β in Alzheimer’s disease. Nature 552:355–361

    Article  CAS  PubMed  Google Scholar 

  33. Vogel JW, Young AL, Oxtoby NP et al (2021) Four distinct trajectories of tau deposition identified in Alzheimer’s disease. Nat Med 27:871–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wissemann WT, Hill-Burns EM, Zabetian CP et al (2013) Association of Parkinson disease with structural and regulatory variants in the HLA region. Am J Hum Genet 93:984–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Bartsch.

Ethics declarations

Interessenkonflikt

T. Bartsch, D. Berg, M. Heneka und F. Leypoldt geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartsch, T., Berg, D., Heneka, M. et al. Parkinson- und Alzheimer-Erkrankung als Systemerkrankungen. Nervenarzt 94, 875–884 (2023). https://doi.org/10.1007/s00115-023-01542-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-023-01542-z

Schlüsselwörter

Keywords

Navigation