Skip to main content
Log in

„ConnectToBrain“

Synergy-Projekt zur Closed-loop-Stimulationstherapie von Netzwerkerkrankungen des Gehirns

“ConnectToBrain”

Synergy project for therapeutic closed-loop stimulation of brain network disorders

  • Leitthema
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Therapeutische nichtinvasive transkranielle Hirnstimulation zeigt mit bisherigen Behandlungsprotokollen nur moderate Effektstärken und eine hohe interindividuelle Variabilität mit vielen Nonrespondern. Ein derzeit intensiv diskutierter Ansatz zur Lösung dieser Probleme ist eine individualisierte Closed-loop-Stimulation. ConnectToBrain ist ein vom Europäischen Forschungsrat gefördertes Synergy-Projekt zur Entwicklung einer nichtinvasiven therapeutischen Closed-loop-Stimulation von Netzwerkerkrankungen des Gehirns. Es besteht aus drei Säulen: (1) Entwicklung einer fast den gesamten zerebralen Kortex abdeckenden Multikanalspule zur transkraniellen Magnetstimulation (mTMS), mit der die Lokalisation, Richtung, Intensität und das Timing induzierter elektrischer Felder im Gehirn hochpräzise elektronisch gesteuert werden können; (2) Entwicklung der Echtzeitanalyse von Aktivität und Konnektivität in Hirnnetzwerken mittels Elektroenzephalographie (EEG) zur räumlichen und zeitlichen Steuerung der mTMS (hirnzustandsabhängige Stimulation) und adaptive Optimierung des Behandlungseffektes mit Ansätzen des maschinellen Lernens (Closed-loop-Stimulation); (3) Translation dieser Neurotechnologie in physiologische und klinische Studien.

Abstract

Therapeutic non-invasive transcranial brain stimulation with previous treatment protocols showed at best moderate effect sizes and large interindividual variability with a substantial proportion of non-responders. A currently intensively discussed approach to address these problems is individualized closed-loop stimulation. ConnectToBrain is a synergy project funded by the European Research Council to develop noninvasive closed-loop therapeutic stimulation of network disorders of the human brain.

It consists of three main pillars: (1) development of a multichannel transcranial magnetic stimulation (mTMS) coil array that covers nearly all of the cerebral cortex and enables highly precise electronic control of location, direction, intensity and timing of the induced electrical fields, (2) development of real-time analysis of activity and connectivity in brain networks using electroencephalography (EEG) for instantaneous spatial and temporal control of stimulation (brain state-dependent, closed-loop stimulation) and adaptive optimization of treatment effects by machine learning and (3) translation of these neurotechnological innovations into physiological and clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Arai N, Müller-Dahlhaus F, Murakami T et al (2011) State-dependent and timing-dependent bidirectional associative plasticity in the human SMA-M1 network. J Neurosci 31:15376–15383

    Article  CAS  PubMed  Google Scholar 

  2. Bajo R, Pusil S, Lopez ME et al (2015) Scopolamine effects on functional brain connectivity: a pharmacological model of Alzheimer’s disease. Sci Rep 5:9748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bergmann TO (2018) Brain state-dependent brain stimulation. Front Psychol 9:2108

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bergmann TO, Karabanov A, Hartwigsen G et al (2016) Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: Current approaches and future perspectives. Neuroimage 140:4–19

    Article  PubMed  Google Scholar 

  5. Bi G, Poo M (2001) Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu Rev Neurosci 24:139–166

    Article  CAS  PubMed  Google Scholar 

  6. Caporale N, Dan Y (2008) Spike timing-dependent plasticity: a Hebbian learning rule. Annu Rev Neurosci 31:25–46

    Article  CAS  PubMed  Google Scholar 

  7. Chella F, Marzetti L, Pizzella V et al (2014) Third order spectral analysis robust to mixing artifacts for mapping cross-frequency interactions in EEG/MEG. Neuroimage 91:146–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Constantinidis C, Klingberg T (2016) The neuroscience of working memory capacity and training. Nature reviews. Neuroscience 17:438–449

    CAS  PubMed  Google Scholar 

  9. De Pasquale F, Penna DS, Snyder AZ et al (2010) Temporal dynamics of spontaneous MEG activity in brain networks. Proc Natl Acad Sci USA 107:6040–6045

    Article  PubMed  Google Scholar 

  10. Enomoto H, Terao Y, Kadowaki S et al (2015) Effects of L‑Dopa and pramipexole on plasticity induced by QPS in human motor cortex. J Neural Transm 122:1253–1261

    Article  CAS  PubMed  Google Scholar 

  11. Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci (Regul Ed) 9:474–480

    Article  Google Scholar 

  12. Fries P (2015) Rhythms for cognition: communication through coherence. Neuron 88:220–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Grefkes C, Nowak DA, Wang LE et al (2010) Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modelling. Neuroimage 50:234–243

    Article  Google Scholar 

  14. Koponen LM, Nieminen JO, Ilmoniemi RJ (2018) Multi-locus transcranial magnetic stimulation—theory and implementation. Brain Stimul 11:849–855

    Article  PubMed  Google Scholar 

  15. Lefaucheur JP, Andre-Obadia N, Antal A et al (2014) Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol 125:2150–2206

    Article  PubMed  Google Scholar 

  16. Lefaucheur JP, Antal A, Ayache SS et al (2017) Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol 128:56–92

    Article  PubMed  Google Scholar 

  17. Lei X, Wu T, Valdes-Sosa PA (2015) Incorporating priors for EEG source imaging and connectivity analysis. Front Neurosci 9:284

    Article  PubMed  PubMed Central  Google Scholar 

  18. Little S, Pogosyan A, Neal S et al (2013) Adaptive deep brain stimulation in advanced Parkinson disease. Ann Neurol 74:449–457

    Article  PubMed  PubMed Central  Google Scholar 

  19. Marzetti L, Penna DS, Snyder AZ et al (2013) Frequency specific interactions of MEG resting state activity within and across brain networks as revealed by the multivariate interaction measure. Neuroimage 79:172–183

    Article  CAS  PubMed  Google Scholar 

  20. Monti RP, Lorenz R, Braga RM et al (2017) Real-time estimation of dynamic functional connectivity networks. Hum Brain Mapp 38:202–220

    Article  PubMed  Google Scholar 

  21. Pascual-Leone A, Rubio B, Pallardo F et al (1996) Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression. Lancet 348:233–237

    Article  CAS  PubMed  Google Scholar 

  22. Rehme AK, Eickhoff SB, Wang LE et al (2011) Dynamic causal modeling of cortical activity from the acute to the chronic stage after stroke. Neuroimage 55:1147–1158

    Article  PubMed  Google Scholar 

  23. Stefanou MI, Desideri D, Belardinelli P et al (2018) Phase synchronicity of mu-rhythm determines efficacy of interhemispheric communication between human motor cortices. J Neurosci 38:10525–10534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Uhlhaas PJ, Singer W (2012) Neuronal dynamics and neuropsychiatric disorders: toward a translational paradigm for dysfunctional large-scale networks. Neuron 75:963–980

    Article  CAS  PubMed  Google Scholar 

  25. Westlake KP, Hinkley LB, Bucci M et al (2012) Resting state alpha-band functional connectivity and recovery after stroke. Exp Neurol 237:160–169

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zrenner C, Belardinelli P, Müller-Dahlhaus F et al (2016) Closed-loop neuroscience and non-invasive brain stimulation: a tale of two loops. Front Cell Neurosci 10:92

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zrenner C, Desideri D, Belardinelli P et al (2018) Real-time EEG-defined excitability states determine efficacy of TMS-induced plasticity in human motor cortex. Brain Stimul 11:374–389

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Ziemann.

Ethics declarations

Interessenkonflikt

U. Ziemann erhielt Honorare für Beraterleistungen von Biogen Idec GmbH, Bayer GmbH, Bristol Myers Squibb GmbH, Pfizer GmbH, CorTec GmbH, Medtronic GmbH, und Forschungsförderungen von Biogen Idec GmbH, Servier, Janssen Pharmaceuticals NV, sämtlich unabhängig von dem hier beschriebenen Forschungsprojekt. R.J. Ilmoniemi ist Erfinder auf Patentanträgen zu TMS- und mTMS-Technologie. Er ist Berater und Aktionär von Nexstim Plc. Er hat Honorare von Nexstim, MEGIN Ltd., und Brainsway Ltd. erhalten, die unabhängig von diesem Forschungsprojekt sind. G.-L. Romani hat keine Interessenskonflikte angegeben.

Sämtliche hier zitierten von den Autoren durchgeführten humanphysiologischen Studien wurden von den zuständigen Ethikkommissionen genehmigt und das informierte Einverständnis der Versuchsteilnehmer wurde vor Studieneinschluss eingeholt. Tierexperimentelle Untersuchungen wurden nicht durchgeführt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziemann, U., Romani, GL. & Ilmoniemi, R.J. „ConnectToBrain“. Nervenarzt 90, 804–808 (2019). https://doi.org/10.1007/s00115-019-0747-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-019-0747-x

Schlüsselwörter

Keywords

Navigation