Skip to main content
Log in

Genuine motorische Phänomene bei schizophrenen Psychosen

Neuronale Korrelate und Pathomechanismen

Genuine motor phenomena in schizophrenia

Neuronal correlates and pathomechanisms

  • Übersichten
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Ungeachtet der zunehmenden Anzahl neurobiologischer Studien zur motorischen Dysfunktion bei schizophrenen Psychosen sind die neuronalen Korrelate und Pathomechanismen genuiner motorischer Auffälligkeiten (GMA) nicht vollständig aufgeklärt. Zudem ist die klinische Relevanz eines potenziellen „motorischen intermediär Phänotyps“ gegenwärtig umstritten. Diese systematische Übersichtsarbeit leistet einen Beitrag zur Charakterisierung eines „motorischen intermediär Phänotyps“ bei schizophrenen Psychosen. Darüber hinaus hat diese Übersichtsarbeit das Ziel, vor dem Hintergrund aktueller Neuroimagingbefunde GMA-assoziierte neuronale Korrelate als Biomarker psychotischer Störungen zu diskutieren. Die detaillierte Erfassung von GMA im Kontext multimodaler Bildgebung könnte zukünftig die Früherkennung psychotischer Störungen und die Einleitung störungsorientierter und individualisierter Therapien fördern. In der Gesamtbetrachtung der Daten gibt es erste Hinweise darauf, dass die motorische Dysfunktion bei schizophrenen Psychosen dimensional betrachtet werden muss. Der prädiktive Wert neurobiologischer Befunde im Hinblick auf die Transition in eine lebensbedrohliche Katatonie oder auf die Entwicklung chronischer Dyskinesien kann gegenwärtig noch nicht abschließend beurteilt werden.

Abstract

Despite a growing body of evidence on motor dysfunction in schizophrenia spectrum disorders, the neuronal correlates of genuine motor abnormalities (GMA) are not fully elucidated at present. Moreover, the clinical relevance of a potential “motor intermediate phenotype” remains controversial. This systematic review aims at characterizing a “motor intermediate phenotype” in schizophrenia spectrum disorders. The second goal of this systematic review is to discuss GMA-associated brain alterations as potential biomarkers of psychosis risk syndrome and manifest motor symptoms against the background of current neuroimaging evidence. The detailed clinical assessment of GMA in the context of multimodal imaging could, in the future promote the early recognition of psychotic disorders and the initiation of disorder-oriented and individualized treatment. Taken as a whole the data provide initial evidence that motor dysfunction in schizophrenic spectrum disorders must be considered dimensionally. The predictive value of neurobiological results with respect to the transition to a life-threatening catatonia or the development of chronic dyskinesia, cannot currently be conclusively assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Hirjak D et al (2017) Genuine motor phenomena in schizophrenic psychoses : theoretical background and definition of context. Nervenarzt. https://doi.org/10.1007/s00115-017-0375-2

    Google Scholar 

  2. Bernard JA, Mittal VA (2015) Updating the research domain criteria: the utility of a motor dimension. Psychol Med 45(13):2685. https://doi.org/10.1017/S0033291715000872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Meyer-Lindenberg A, Weinberger DR (2006) Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat Rev Neurosci 7:818–827

  4. Walther S, Strik W (2012) Motor symptoms and schizophrenia. Neuropsychobiology 66(2):77–92

    Article  PubMed  Google Scholar 

  5. Mittal VA, Bernard JA, Northoff G (2017) What can different motor circuits Tell us about psychosis? An RdoC perspective. Schizophr Bull 43(5):949. https://doi.org/10.1093/schbul/sbx087

    Article  PubMed  Google Scholar 

  6. Walther S et al (2015) The longitudinal course of gross motor activity in schizophrenia – within and between episodes. Front Psychiatry 6:10

    PubMed  PubMed Central  Google Scholar 

  7. van Harten PN et al (2017) The clinical and prognostic value of motor abnormalities in psychosis, and the importance of instrumental assessment. Neurosci Biobehav Rev 80:476–487

    Article  PubMed  Google Scholar 

  8. Hirjak D et al (2015) Motor dysfunction within the schizophrenia-spectrum: a dimensional step towards an underappreciated domain. Schizophr Res 169(1-3):217–233

    Article  PubMed  Google Scholar 

  9. Hirjak D et al (2015) Motor abnormalities and basal ganglia in schizophrenia: evidence from structural magnetic resonance imaging. Brain Topogr 28(1):135–152

    Article  PubMed  Google Scholar 

  10. Zhao Q et al (2013) Neurological soft signs are not “soft” in brain structure and functional networks: evidence from ALE meta-analysis. Schizophr Bull 40(3):626. https://doi.org/10.1093/schbul/sbt063

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chan RC et al (2010) Neurological soft signs in schizophrenia: a meta-analysis. Schizophr Bull 36(6):1089–1104

    Article  PubMed  Google Scholar 

  12. Dazzan P et al (2004) The structural brain correlates of neurological soft signs in AESOP first-episode psychoses study. Brain 127(Pt 1):143–153

    Article  PubMed  Google Scholar 

  13. Bottmer C et al (2005) Reduced cerebellar volume and neurological soft signs in first-episode schizophrenia. Psychiatry Res 140(3):239–250

    Article  PubMed  Google Scholar 

  14. Bersani G et al (2007) Neurological soft signs and cerebral measurements investigated by means of MRI in schizophrenic patients. Neurosci Lett 413(1):82–87

    Article  CAS  PubMed  Google Scholar 

  15. Venkatasubramanian G et al (2008) Neuroanatomical correlates of neurological soft signs in antipsychotic-naive schizophrenia. Psychiatry Res 164(3):215–222

    Article  PubMed  Google Scholar 

  16. Thomann PA et al (2009) Neurological soft signs and brain morphology in first-episode schizophrenia. Psychol Med 39(3):371–379

  17. Thomann PA et al (2009) Cerebellar substructures and neurological soft signs in first-episode schizophrenia. Psychiatry Res 173(2):83–87

    Article  PubMed  Google Scholar 

  18. Janssen J et al (2009) Brain morphology and neurological soft signs in adolescents with first-episode psychosis. Br J Psychiatry 195(3):227–233

    Article  PubMed  Google Scholar 

  19. Mouchet-Mages S et al (2011) Correlations of cerebello-thalamo-prefrontal structure and neurological soft signs in patients with first-episode psychosis. Acta Psychiatr Scand 123(6):451–458

    Article  CAS  PubMed  Google Scholar 

  20. Heuser M et al (2011) Neurological signs and morphological cerebral changes in schizophrenia: an analysis of NSS subscales in patients with first episode psychosis. Psychiatry Res 192(2):69–76

    Article  PubMed  Google Scholar 

  21. Bersani G, Quartini A, Paolemili M, Clemente R, Iannitelli A, Di Biasi C, Gualdi G (2011) Neurological Soft Signs and Corpus Callosum morphology in schizophrenia. Neurosci Lett 499(3):170–174. https://doi.org/10.1016/j.neulet.2011.05.046

  22. Kong L et al (2012) Neurological soft signs and gray matter changes: a longitudinal analysis in first-episode schizophrenia. Schizophr Res 134(1):27–32

    Article  PubMed  Google Scholar 

  23. Hirjak D et al (2012) Neurological soft signs and subcortical brain morphology in recent onset schizophrenia. J Psychiatr Res 46(4):533–539

    Article  PubMed  Google Scholar 

  24. Hirjak D et al (2013) Neurological soft signs and brainstem morphology in first-episode schizophrenia. Neuropsychobiology 68(2):91–99. https://doi.org/10.1159/000350999. Epub 2013 Jul 19

  25. Behere RV (2013) Dorsolateral prefrontal lobe volume and neurological soft signs as predictors of clinical social and functional outcome in schizophrenia: A longitudinal study. Indian J Psychiatry 55(2):111–116. https://doi.org/10.4103/0019-5545.111445

  26. Gilbert AR, et al (2001) Thalamic volumes in patients with first-episode schizophrenia. Am J Psychiatry 158(4):618–624

  27. Hirjak D et al (2014) Cortical signature of neurological soft signs in recent onset schizophrenia. Brain Topogr 27(2):296–306

    Article  PubMed  Google Scholar 

  28. Gay O et al (2013) Cortex morphology in first-episode psychosis patients with neurological soft signs. Schizophr Bull 39(4):820–829

  29. Singh S, Goyal S, Modi S, Kumar P, Singh N, Bhatia T, Deshpande SN, Khushu S (2014) Motor function deficits in schizophrenia: an fMRI and VBM study.​ Neuroradiology 56(5):413–422. https://doi.org/10.1007/s00234-014-1325-3

    Google Scholar 

  30. Hirjak D et al (2015) Local brain gyrification as a marker of neurological soft signs in schizophrenia. Behav Brain Res 292:19–25

    Article  PubMed  Google Scholar 

  31. Kong L et al (2015) Association of cortical thickness and neurological soft signs in patients with chronic schizophrenia and healthy controls. Neuropsychobiology 71(4):225–233

  32. Huttlova J et al (2014) Abnormalities in myelination of the superior cerebellar peduncle in patients with schizophrenia and deficits in movement sequencing. Cerebellum 13(4):415–424

  33. Hirjak D et al (2015) Neurological soft signs in recent-onset schizophrenia: Focus on the cerebellum. Prog Neuropsychopharmacol Biol Psychiatry 60:18–25

  34. Hirjak D et al (2016) Neuroanatomical Markers of Neurological Soft Signs in Recent-Onset Schizophrenia and Asperger-Syndrome. Brain Topogr 29(3):382–394

  35. Besson JA et al (1987) Nuclear magnetic resonance brain imaging in chronic schizophrenia. Br J Psychiatry 150:161–163

    Article  CAS  PubMed  Google Scholar 

  36. Heinz R et al (1988) MRI scans in patients with tardive dyskinesia. Biol Psychiatry 24(7):852–857

  37. Bartzokis G et al (1990) MRI in tardive dyskinesia: shortened left caudate T2. Biol Psychiatry 28(12):1027–1036

    Article  CAS  PubMed  Google Scholar 

  38. Williamson P et al (1991) Correlation of negative symptoms in schizophrenia with frontal lobe parameters on magnetic resonance imaging. Br J Psychiatry 159:130–134

  39. Chouinard G, Margolese HC (2005) Manual for the Extrapyramidal Symptom Rating Scale (ESRS). Schizophr Res 76(2-3):247–265

  40. Harvey I et al (1991) MRI in schizophrenia: basal ganglia and white matter T1 times. Psychol Med 21(3):587–598

  41. Mion CC et al (1991) MRI abnormalities in tardive dyskinesia. Psychiatry Res 40(3):157–166

    Article  CAS  PubMed  Google Scholar 

  42. Granholm E et al (1993) Preliminary associations between motor procedural learning, basal ganglia T2 relaxation times, and tardive dyskinesia in schizophrenia. Psychiatry Res 50(1):33–44

  43. Elkashef AM et al (1994) Basal ganglia pathology in schizophrenia and tardive dyskinesia: an MRI quantitative study. Am J Psychiatry 151(5):752–755

  44. Waddington JL et al (1995) Tardive dyskinesia in schizophrenia. Relationship to minor physical anomalies, frontal lobe dysfunction and cerebral structure on magnetic resonance imaging. Br J Psychiatry 167(1):41–44

  45. Buckley P et al (1995) Basal ganglia T2 relaxation times in schizophrenia: a quantitative magnetic resonance imaging study in relation to tardive dyskinesia. Psychiatry Res 61(2):95–102

  46. McCreadie RG et al (1996) Abnormal movements in never-medicated Indian patients with schizophrenia. Br J Psychiatry 168(2):221–226

  47. Bai YM et al (2009) White matter abnormalities in schizophrenia patients with tardive dyskinesia: a diffusion tensor image study. Schizophr Res 109(1–3):167–181

    Article  PubMed  Google Scholar 

  48. Sarro S et al (2013) Structural brain changes associated with tardive dyskinesia in schizophrenia. Br J Psychiatry 203(1):51–57

    Article  PubMed  Google Scholar 

  49. Li CT et al (2013) Gray matter abnormalities in schizophrenia patients with tardive dyskinesia: a magnetic resonance imaging voxel-based morphometry study. PLoS One 8(8):e71034

  50. Schröder J et al (1995) Sensorimotor cortex and supplementary motor area changes in schizophrenia. A study with functional magnetic resonance imaging. Br J Psychiatry 167(2):197–201

    Article  PubMed  Google Scholar 

  51. Schröder J et al (1999) Motor dysfunction and sensorimotor cortex activation changes in schizophrenia: a study with functional magnetic resonance imaging. Neuroimage 9(1):81–87

    Article  PubMed  Google Scholar 

  52. Muller JL et al (2002) Subcortical overactivation in untreated schizophrenic patients: a functional magnetic resonance image finger-tapping study. Psychiatry Clin Neurosci 56(1):77–84

  53. Rogowska J, Gruber SA, Yurgelun-Todd DA (2004) Functional magnetic resonance imaging in schizophrenia: cortical response to motor stimulation. Psychiatry Res 130(3):227–243

    Article  PubMed  Google Scholar 

  54. Kasparek T et al (2012) Cortico-cerebellar functional connectivity and sequencing of movements in schizophrenia. BMC Psychiatry 12:17

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zemankova P, Lungu O, Huttlova J, Kerkovsky M, Zubor J, Lipova P, Bares M, Kasparek T (2016) Neuronal substrate and effective connectivity of abnormal movement sequencing in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 67:1–9. https://doi.org/10.1016/j.pnpbp.2016.01.003. Epub 2016 Jan 11

  56. Chan RC et al (2015) Prefrontal cortex connectivity dysfunction in performing the Fist-Edge-Palm task in patients with first-episode schizophrenia and non-psychotic first-degree relatives. Neuroimage Clin 9:411–417

    Article  PubMed  PubMed Central  Google Scholar 

  57. Northoff G et al (1999) Reduced activation and altered laterality in two neuroleptic-naive catatonic patients during a motor task in functional MRI. Psychol Med 29(4):997–1002

    Article  CAS  PubMed  Google Scholar 

  58. Northoff G et al (2004) Orbitofrontal cortical dysfunction in akinetic catatonia: a functional magnetic resonance imaging study during negative emotional stimulation. Schizophr Bull 30(2):405–427

    Article  PubMed  Google Scholar 

  59. Scheuerecker J et al (2009) Cerebral network deficits in post-acute catatonic schizophrenic patients measured by fMRI. J Psychiatr Res 43(6):607–614

    Article  CAS  PubMed  Google Scholar 

  60. Richter A, Grimm S, Northoff G (2010) Lorazepam modulates orbitofrontal signal changes during emotional processing in catatonia. Hum Psychopharmacol 25(1):55–62

  61. Walther S, Schappi L, Federspiel A, Bohlhalter S, Wiest R, Strik W, Stegmayer K (2017) Resting-State Hyperperfusion of the Supplementary Motor Area in Catatonia. Schizophr Bull 43:972–981

  62. Payoux P et al (2004) Cortical motor activation in akinetic schizophrenic patients: a pilot functional MRI study. Mov Disord 19(1):83–90

    Article  PubMed  Google Scholar 

  63. Walther S et al (2017) Aberrant hyperconnectivity in the motor system at rest is linked to motor abnormalities in schizophrenia spectrum disorders. Schizophr Bull 43(5):982–992. https://doi.org/10.1093/schbul/sbx091

    Article  PubMed  Google Scholar 

  64. Thomann PA et al (2015) Neural network activity and neurological soft signs in healthy adults. Behav Brain Res 278:514–519

    Article  PubMed  Google Scholar 

  65. Northoff G et al (1999) Catatonia as a psychomotor syndrome: a rating scale and extrapyramidal motor symptoms. Mov Disord 14(3):404–416

    Article  CAS  PubMed  Google Scholar 

  66. Mittal VA et al (2013) Neurological soft signs predict abnormal cerebellar-thalamic tract development and negative symptoms in adolescents at high risk for psychosis: a longitudinal perspective. Schizophr Bull 40(6):1204. https://doi.org/10.1093/schbul/sbt199

    Article  PubMed  PubMed Central  Google Scholar 

  67. Dean DJ, Mittal VA (2015) Spontaneous parkinsonisms and striatal impairment in neuroleptic free youth at ultrahigh risk for psychosis. NPJ Schizophr 1. https://doi.org/10.1038/npjschz.2014.6

    PubMed  PubMed Central  Google Scholar 

  68. Hirjak D et al (2015) Neurological soft signs in recent-onset schizophrenia: focus on the cerebellum. Prog Neuropsychopharmacol Biol Psychiatry 60: p:18–25

    Article  Google Scholar 

  69. Hirjak D et al (2013) Neurological soft signs and brainstem morphology in first-episode schizophrenia. Neuropsychobiology 68(2):91–99

    Article  PubMed  Google Scholar 

  70. Thomann PA et al (2009) Neurological soft signs and brain morphology in first-episode schizophrenia. Psychol Med 39(3):371–379

    Article  CAS  PubMed  Google Scholar 

  71. Mouchet-Mages S et al (2007) Sensory dysfunction is correlated to cerebellar volume reduction in early schizophrenia. Schizophr Res 91(1–3):266–269

    Article  PubMed  Google Scholar 

  72. RishikeshV B (2013) Dorsolateral prefrontal lobe volume and neurological soft signs as predictors of clinical social and functional outcome in schizophrenia: A longitudinal study. Indian J Psychiatry 55(2):111

  73. Bombin I, Arango C, Buchanan RW (2005) Significance and meaning of neurological signs in schizophrenia: two decades later. Schizophr Bull 31(4):962. https://doi.org/10.1093/schbul/sbi028

    Article  PubMed  Google Scholar 

  74. Hirjak D et al (2015) Neuroanatomical markers of neurological soft signs in recent-onset schizophrenia and asperger-syndrome. Brain Topogr 29(3):382. https://doi.org/10.1007/s10548-015-0468-9

    Article  PubMed  Google Scholar 

  75. Kodama S et al (2001) Aberrant brain activation following motor skill learning in schizophrenic patients as shown by functional magnetic resonance imaging. Psychol Med 31(6):1079–1088

    Article  CAS  PubMed  Google Scholar 

  76. Bartzokis G et al (1989) Tardive dyskinesia in schizophrenic patients: correlation with negative symptoms. Psychiatry Res 28(2):145–151

    Article  CAS  PubMed  Google Scholar 

  77. Mittal VA et al (2010) Striatal volumes and dyskinetic movements in youth at high-risk for psychosis. Schizophr Res 123(1):68–70

    Article  PubMed  PubMed Central  Google Scholar 

  78. Bernard JA et al (2014) Cerebellar networks in individuals at ultra high-risk of psychosis: impact on postural sway and symptom severity. Hum Brain Mapp 35(8):4064–4078

    Article  PubMed  PubMed Central  Google Scholar 

  79. Dean DJ et al (2015) Increased postural sway predicts negative symptom progression in youth at ultrahigh risk for psychosis. Schizophr Res 162(1-3):86–89

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zilles K, Rehkämper G (1998) Funktionelle Neuroanatomie. 3. Aufl. Springer, Heidelberg

    Book  Google Scholar 

  81. Fornito A et al (2009) Anatomical abnormalities of the anterior cingulate cortex in schizophrenia: bridging the gap between neuroimaging and neuropathology. Schizophr Bull 35(5):973–993

    Article  PubMed  Google Scholar 

  82. Gautam P et al (2015) Cortical gyrification and its relationships with cortical volume, cortical thickness, and cognitive performance in healthy mid-life adults. Behav Brain Res 287:331–339

    Article  PubMed  Google Scholar 

  83. Schultz CC et al (2010) Reduced cortical thickness in first episode schizophrenia. Schizophr Res 116(2–3):204–209

    Article  PubMed  Google Scholar 

  84. Amunts K, Zilles K (2013) Funktionelle Neuroanatomie. In: Schneider F, Fink GR (Hrsg) Funktionelle MRT in Psychiatrie und Neurologie. Springer, Heidelberg, S 7–60

    Chapter  Google Scholar 

  85. Zilles K, Palomero-Gallagher N, Amunts K (2013) Development of cortical folding during evolution and ontogeny. Trends Neurosci 36(5):275–284

    Article  CAS  PubMed  Google Scholar 

  86. Diedrichsen J (2006) A spatially unbiased atlas template of the human cerebellum. Neuroimage 33(1):127–138

    Article  PubMed  Google Scholar 

  87. Buckner RL (2013) The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron 80(3):807–815

    Article  CAS  PubMed  Google Scholar 

  88. Stoodley CJ, Valera EM, Schmahmann JD (2012) Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage 59:1560–1570

    Article  PubMed  Google Scholar 

  89. Stoodley CJ, Schmahmann JD (2010) Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 46:831–844

    Article  PubMed  PubMed Central  Google Scholar 

  90. Bernard JA, Seidler RD (2013) Relationships between regional cerebellar volume and sensorimotor and cognitive function in young and older adults. Cerebellum 12(5):721–737

    Article  PubMed  Google Scholar 

  91. Hirjak D et al (2016) Neuroanatomical markers of neurological soft signs in recent-onset schizophrenia and asperger-syndrome. Brain Topogr 29(3):382–394

    Article  PubMed  Google Scholar 

  92. Blanke O, Slater M, Serino A (2015) Behavioral, neural, and computational principles of bodily self-consciousness. Neuron 88(1):145–166

    Article  CAS  PubMed  Google Scholar 

  93. Bernard JA, Mittal VA (2014) Cerebellar-motor dysfunction in schizophrenia and psychosis-risk: the importance of regional cerebellar analysis approaches. Front Psychiatry 5:160

    Article  PubMed  PubMed Central  Google Scholar 

  94. Picazio S, Koch G (2015) Is motor inhibition mediated by cerebello-cortical interactions? Cerebellum 14(1):47–49

    Article  PubMed  Google Scholar 

  95. Tuppurainen H et al (2006) Midbrain dopamine D2/3 receptor binding in schizophrenia. Eur Arch Psychiatry Clin Neurosci 256(6):382–387

    Article  PubMed  Google Scholar 

  96. Tuppurainen H et al (2009) Dopamine D2/3 receptor binding potential and occupancy in midbrain and temporal cortex by haloperidol, olanzapine and clozapine. Psychiatry Clin Neurosci 63(4):529–537

    Article  CAS  PubMed  Google Scholar 

  97. Nopoulos PC et al (2001) An MRI study of midbrain morphology in patients with schizophrenia: relationship to psychosis, neuroleptics, and cerebellar neural circuitry. Biol Psychiatry 49(1):13–19

    Article  CAS  PubMed  Google Scholar 

  98. Whitty PF, Owoeye O, Waddington JL (2009) Neurological signs and involuntary movements in schizophrenia: intrinsic to and informative on systems pathobiology. Schizophr Bull 35(2):415–424

    Article  PubMed  Google Scholar 

  99. Kolbe H et al (1981) Neuroleptic-induced acute dystonic reactions may be due to enhanced dopamine release on to supersensitive postsynaptic receptors. Neurology 31(4):434–439

    Article  CAS  PubMed  Google Scholar 

  100. Mittal VA et al (2007) Movement abnormalities and the progression of prodromal symptomatology in adolescents at risk for psychotic disorders. J Abnorm Psychol 116(2):260–267

    Article  PubMed  Google Scholar 

  101. Northoff G (2002) What catatonia can tell us about “top-down modulation”: a neuropsychiatric hypothesis. Behav Brain Sci 25(5):555–577 (discussion 578–604)

    PubMed  Google Scholar 

  102. Peralta V et al (2013) Phenomenological differences between spontaneous and drug-related extrapyramidal syndromes in patients with schizophrenia-spectrum disorders. J Clin Psychopharmacol 33(3):438–440

    Article  PubMed  Google Scholar 

  103. Peralta V et al (2011) Risk factors, pre-morbid functioning and episode correlates of neurological soft signs in drug-naive patients with schizophrenia-spectrum disorders. Psychol Med 41(6):1279–1289

    Article  CAS  PubMed  Google Scholar 

  104. Kaplan CM et al (2016) Estimating changing contexts in schizophrenia. Brain 139(Pt 7):2082–2095

    Article  PubMed  PubMed Central  Google Scholar 

  105. Millan MJ et al (2016) Altering the course of schizophrenia: progress and perspectives. Nat Rev Drug Discov 15(7):485–515

    Article  CAS  PubMed  Google Scholar 

  106. Franke B et al (2016) Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof of concept. Nat Neurosci 19(3):420–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kronenberg F, Heid IM (2007) Genetik intermediärer Phänotypen. Med Genet 19:304–308

    CAS  Google Scholar 

  108. Chan RCK, Gottesman II (2008) Neurological soft signs as candidate endophenotypes for schizophrenia: a shooting star or a Northern star? Neurosci Biobehav Rev 32(5):957. https://doi.org/10.1016/j.neubiorev.2008.01.005

    Article  PubMed  Google Scholar 

  109. Xu T et al (2016) Heritability and familiality of neurological soft signs: evidence from healthy twins, patients with schizophrenia and non-psychotic first-degree relatives. Psychol Med 46(1):117–123

    Article  CAS  PubMed  Google Scholar 

  110. Tost H, Alam T, Meyer-Lindenberg A (2010) Dopamine and psychosis: theory, pathomechanisms and intermediate phenotypes. Neurosci Biobehav Rev 34:689–700

    Article  CAS  PubMed  Google Scholar 

  111. Brooks SP, Dunnett SB (2009) Tests to assess motor phenotype in mice: a user’s guide. Nat Rev Neurosci 10(7):519–529

    Article  CAS  PubMed  Google Scholar 

  112. Horev G et al (2011) Dosage-dependent phenotypes in models of 16p11.2 lesions found in autism. Proc Natl Acad Sci U S A 108(41):17076–17081

    Article  PubMed  PubMed Central  Google Scholar 

  113. Blaker-Lee A et al (2012) Zebrafish homologs of genes within 16p11.2, a genomic region associated with brain disorders, are active during brain development, and include two deletion dosage sensor genes. Dis Model Mech 5(6):834–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Angelakos CC et al (2017) Hyperactivity and male-specific sleep deficits in the 16p11.2 deletion mouse model of autism. Autism Res 10(4):572–584

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Hirjak.

Ethics declarations

Interessenkonflikt

D. Hirjak, G. Northoff, P.A. Thomann, K.M. Kubera und R.C. Wolf geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Abschnitte dieser Arbeit sind der kumulativen Habilitationsschrift des Erstautors entnommen, die im September 2016 von der Habilitationskommission des Fachbereichs Medizin der Universität Heidelberg angenommen wurde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirjak, D., Northoff, G., Thomann, P.A. et al. Genuine motorische Phänomene bei schizophrenen Psychosen. Nervenarzt 89, 27–43 (2018). https://doi.org/10.1007/s00115-017-0434-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-017-0434-8

Schlüsselwörter

Keywords

Navigation