Skip to main content
Log in

Suche nach Risikogenen bei der Alzheimer-Erkrankung

Search for risk genes in Alzheimer’s disease

  • Leitthema
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Die Alzheimer-Erkrankung („Alzheimer’s disease“, AD) ist die häufigste Form der neurodegenerativen Demenz. Die Suszeptibilität für die AD wird durch eine komplexe Interaktion zwischen genetischen, epigenetischen und Umweltfaktoren bestimmt. Generell beträgt das Risiko, welches genetischen Faktoren zugeordnet werden kann, ca. 80 %. Obwohl die meisten AD-Fälle sporadisch sind, gibt es jedoch auch Familien mit seltenen voll penetranten Mutationen in APP, PSEN1 und PSEN2. Diese sind jedoch sehr selten und kaum mit sporadischen Fällen assoziiert. Über 20 Jahre lang war das APOE-ε4-Allel der einzige bekannte genetische Risikofaktor der sporadischen AD, der die Suszeptibilität zur AD in etwa dreifach erhöht. Durch die Entwicklung der genomweiten Assoziationsstudien wurde die Suche nach zusätzlichen genetischen Faktoren vorangetrieben und führte zur Identifizierung 26 neuer Risikovarianten. Bei genauerer Betrachtung lassen sich diese Gene in verschiedene Gruppen einordnen, die maßgeblich in bestimmten biologischen Signalwegen zusammengefasst werden können, wie Cholesterol- und Lipidmetabolismus, Immunantwort sowie endozytotische Transportvorgänge; u. a. mithilfe neuer Sequenziermethoden wurden zudem neue Impulse in der Risikogensuche gesetzt. Durch die Exomsequenzierung wurden Assoziationen zwischen der AD und seltenen kodierenden Varianten bei TREM2, SORL1 und ABCA1 aufgedeckt (geringere Allelfrequenz <1 %). Somit hat der Fortschritt der genetischen Forschung maßgeblich zum Verständnis der Krankheitsmechanismen beigetragen. Doch obwohl unser Wissen über die Genetik der AD deutlich vorangeschritten ist, ist es noch weit davon entfernt, vollständig zu sein. Um jedoch die genaue Architektur der AD zu vervollständigen, muss weitere intensive Forschung betrieben werden.

Abstract

Alzheimer’s disease (AD) is the most common form of neurodegenerative dementia. The susceptibility to AD is determined by a complex interaction between genetic, epigenetic, and environmental factors. Herein, the risk that can be attributed to genetic factors is high (up to 80%). While most AD patients are sporadic, in rare families Mendelian mode of inheritance can be observed. In these rare familial cases, full penetrant mutations have been identified in APP, PSEN1, and PSEN2. Mutations in these three genes are however rarely found in sporadic AD. For over 20 years, the only known genetic risk factor in sporadic AD cases was the APOE-ε4 allele, which increases susceptibility to AD by approximately threefold. Unfortunately, none of these genes explain the frequency of AD. Identification of additional genetic factors was propelled by the advent of genomic approaches such as genome-wide association studies, which has already led to the characterization of 26 novel genetic risk factors. Interestingly, several of these genetic signals cluster in biological pathways including cholesterol, lipid metabolism, immune response, and endocytic trafficking. An additional impulse in genetic research came from the development of novel sequencing technologies. For example, the whole exome sequencing approach has identified an association between the risk of AD and rare coding variants (minor allele frequency <1%) located in genes such as TREM2, SORL1, and ABCA7. Thus, progress from genetic research has significantly increased our understanding of the disease mechanisms operating in AD. However, even though our knowledge of the genetics of sporadic forms of AD has progressed markedly over the last years, it is still far from complete. Additional research is needed to complete the genetic architecture of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Abe-Dohmae S, Kato KH, Kumon Y et al (2006) Serum amyloid A generates high density lipoprotein with cellular lipid in an ABCA1 – or ABCA7-dependent manner. J Lipid Res 47:1542–1550

    Article  CAS  PubMed  Google Scholar 

  2. Andersen OM, Reiche J, Schmidt V et al (2005) Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc Natl Acad Sci U S A 102:13461–13466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baig S, Joseph SA, Tyler H et al (2010) Distribution and expression of picalm in Alzheimer disease. J Neuropathol Exp Neurol 69:1071–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Benitez BA, Cooper B, Pastor P et al (2013) TREM2 is associated with the risk of Alzheimer’s disease in Spanish population. Neurobiol Aging 34:1711.e15. doi:10.1016/j.neurobiolaging.2012.12.018

    Article  CAS  Google Scholar 

  5. Chapuis J, Hansmannel F, Gistelinck M et al (2013) Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology. Mol Psychiatry 18:1225–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Corder EH, Saunders AM, Strittmatter WJ et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923

    Article  CAS  PubMed  Google Scholar 

  7. Corder EH, Saunders AM, Risch NJ et al (1994) Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet 7:180–184

    Article  CAS  PubMed  Google Scholar 

  8. Cruchaga C, Jauwe JS, Harari O et al (2013) GWAS of cerebrospinal fluid tau levels identifies risk variants for Alzheimer’s disease. Neuron 78:256–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Eikelenboom P, Stam FC (1982) Immunoglobulins and complement factors in senile plaques. An immunoperoxidase study. Acta Neuropathol 57:239–242

    Article  CAS  PubMed  Google Scholar 

  10. Escott-Price V, Bellenguez C, Wang LS et al (2014) Gene-wide analysis detects two new susceptibility genes for Alzheimer’s disease. PLOS ONE 9(6):e94661–12

    Article  PubMed  PubMed Central  Google Scholar 

  11. Evangelou E, Ioannidis JP (2013) Meta-analysis methods for genome-wide association studies and beyond. Nat Rev Genet 14:379–389

    Article  CAS  PubMed  Google Scholar 

  12. Farrer LA, Cupples LA, Haines JL et al (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 278:1349–1356

    Article  CAS  PubMed  Google Scholar 

  13. Garnache-Ottou F, Chaperot L, Biichle S et al (2005) Expression of the myeloid-associated marker CD33 is not an exclusive factor for leukemic plasmacytoid dendritic cells. Blood 105:1256–1264

    Article  CAS  PubMed  Google Scholar 

  14. Gatz M, Pedersen NL, Berg S et al (1997) Heritability for Alzheimer’s disease: the study of dementia in Swedish twins. J Gerontol A Biol Sci Med Sci 52:M117–M125

    Article  CAS  PubMed  Google Scholar 

  15. Gatz M, Reynolds CA, Fratiglioni L et al (2006) Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 63:168–174

    Article  PubMed  Google Scholar 

  16. Genin E, Hannequin D, Wallon D et al (2011) APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Mol Psychiatry 16:903–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Glebov K, Wunderlich P, Karaca I et al (2016) Functional involvement of gamma-secretase in signaling of the triggering receptor expressed on myeloid cells-2 (TREM2). J Neuroinflammation 13:17

    Article  PubMed  PubMed Central  Google Scholar 

  18. Goate A, Chartier-Harlin MC, Mullan M et al (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349:704–706

    Article  CAS  PubMed  Google Scholar 

  19. Guerreiro R, Wojtas A, Bras J (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368:117–127

    Article  CAS  PubMed  Google Scholar 

  20. Harold D, Abraham R, Hollingworth P et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41:1088–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hernandez-Caselles T, Martinez-Esparza M, Perez-Oliva AB et al (2006) A study of CD33 (SIGLEC-3) antigen expression and function on activated human T and NK cells: two isoforms of CD33 are generated by alternative splicing. J Leukoc Biol 79:46–58

    Article  CAS  PubMed  Google Scholar 

  22. Hollingworth P, Harold D, Sims R et al (2011) Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 43:429–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hooli BV, Parrado AR, Mullin K et al (2014) The rare TREM2 R47H variant exerts only a modest effect on Alzheimer disease risk. Neurology 83:1353–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang M, Wang D, Xu Z et al (2015) Lack of genetic association between TREM2 and Alzheimer’s disease in East Asian population: a systematic review and meta-analysis. Am J Alzheimers Dis Other Demen 30:541–546

    Article  PubMed  Google Scholar 

  25. International Genomics of Alzheimer’s Disease Concortium (IGAP) (2015) Convergent genetic and expression data implicate immunity in Alzheimer’s disease. Alzheimers Dement 11:658–671

    Article  Google Scholar 

  26. Iwamoto N, Abe-Dohmae S, Sato R et al (2006) ABCA7 expression is regulated by cellular cholesterol through the SREBP2 pathway and associated with phagocytosis. J Lipid Res 47:1915–1927

    Article  CAS  PubMed  Google Scholar 

  27. Jin SC, Benitez BA, Karch CM et al (2014) Coding variants in TREM2 increase risk for Alzheimer’s disease. Hum Mol Genet 23:5838–5846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jones L, Holmans PA, Hamshere ML et al (2010) Genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of Alzheimer’s disease. PLOS ONE 5:e13950

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jonsson T, Stefansson H, Steinberg S et al (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368:107–116

    Article  CAS  PubMed  Google Scholar 

  30. Karch CM, Goate AM (2015) Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry 77:43–51

    Article  CAS  PubMed  Google Scholar 

  31. Karch CM, Jeng AT, Nowotny P et al (2012) Expression of novel Alzheimer’s disease risk genes in control and Alzheimer’s disease brains. PLOS ONE 7:e50976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim WS, Weickert CS, Garner B (2008) Role of ATP-binding cassette transporters in brain lipid transport and neurological disease. J Neurochem 104:1145–1166

    Article  CAS  PubMed  Google Scholar 

  33. Krych-Goldberg M, Moulds JM, Atkinson JP (2002) Human complement receptor type 1 (CR1) binds to a major malarial adhesin. Trends Mol Med 8:531–537

    Article  CAS  PubMed  Google Scholar 

  34. Lacour A, Espinosa A, Louwersheimer E et al (2017) Genome-wide significant risk factors for Alzheimer’s disease: role in progression to dementia due to Alzheimer’s disease among subjects with mild cognitive impairment. Mol Psychiatry 22:153–160

    Article  CAS  PubMed  Google Scholar 

  35. Lambert JC, Amouyel P (2011) Genetics of Alzheimer’s disease: new evidences for an old hypothesis? Curr Opin Genet Dev 21:295–301

    Article  CAS  PubMed  Google Scholar 

  36. Lambert JC, Heath S, Even G et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41:1094–1099

    Article  CAS  PubMed  Google Scholar 

  37. Lambert JC, Ibrahim-Verbaas CA, Harold D et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45:1452–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Levy-Lahad E, Wijsman EM, Nemens E et al (1995) A familial Alzheimer’s disease locus on chromosome 1. Science 269:970–973

    Article  CAS  PubMed  Google Scholar 

  39. Lill CM, Rengmark A, Pihlstrom L et al (2015) The role of TREM2 R47H as a risk factor for Alzheimer’s disease, frontotemporal lobar degeneration, amyotrophic lateral sclerosis, and Parkinson’s disease. Alzheimers Dement 11:1407–1416

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lin CC, Tsai P, Sun HY et al (2014) Apolipoprotein J, a glucose-upregulated molecular chaperone, stabilizes core and NS5A to promote infectious hepatitis C virus virion production. J Hepatol 61:984–993

    Article  CAS  PubMed  Google Scholar 

  41. Liu D, Niu ZX (2009) The structure, genetic polymorphisms, expression and biological functions of complement receptor type 1 (CR1/CD35). Immunopharmacol Immunotoxicol 31:524–535

    Article  CAS  PubMed  Google Scholar 

  42. McQueen MB, Bertram L, Lange C et al (2007) Exploring candidate gene associations with neuropsychological performance. Am J Med Genet B Neuropsychiatr Genet 144B:987–991

    Article  PubMed  Google Scholar 

  43. Michaelson DM (2014) APOE epsilon4: the most prevalent yet understudied risk factor for Alzheimer’s disease. Alzheimers Dement 10:861–868

    Article  PubMed  Google Scholar 

  44. Miller SE, Sahlender DA, Graham SC et al (2011) The molecular basis for the endocytosis of small R‑SNAREs by the clathrin adaptor CALM. Cell 147:1118–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Naj AC, Jun G, Beecham GW et al (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 43:436–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Parikh I, Medway C, Younkin S et al (2014) An intronic PICALM polymorphism, rs588076, is associated with allelic expression of a PICALM isoform. Mol Neurodegener 9:32

    Article  PubMed  PubMed Central  Google Scholar 

  47. Potkin SG, Guffanti G, Lakatos A et al (2009) Hippocampal atrophy as a quantitative trait in a genome-wide association study identifying novel susceptibility genes for Alzheimer’s disease. PLOS ONE 4:e6501

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pottier C, Hannequin D, Coutant S et al (2012) High frequency of potentially pathogenic SORL1 mutations in autosomal dominant early-onset Alzheimer disease. Mol Psychiatry 17:875–879

    Article  CAS  PubMed  Google Scholar 

  49. Ramirez A, Van Der Flier WM, Herold C (2014) SUCLG2 identified as both a determinator of CSF Abeta1-42 levels and an attenuator of cognitive decline in Alzheimer’s disease. Hum Mol Genet 23:6644–6658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ridge PG, Mukherjee S, Crane PK et al (2013) Alzheimer’s disease: analyzing the missing heritability. PLOS ONE 8:e79771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rogaeva E, Meng Y, Lee JH et al (2007) The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet 39:168–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rogers J, Li R, Mastroeni D et al (2006) Peripheral clearance of amyloid beta peptide by complement C3-dependent adherence to erythrocytes. Neurobiol Aging 27:1733–1739

    Article  CAS  PubMed  Google Scholar 

  53. Ruiz A, Dols-Icardo O, Bullido MJ et al (2014) Assessing the role of the TREM2 p.R47H variant as a risk factor for Alzheimer’s disease and frontotemporal dementia. Neurobiol Aging 35:444.e1–444.e4

    Article  CAS  Google Scholar 

  54. Ruiz A, Heilmann S, Becker T et al (2014) Follow-up of loci from the International Genomics of Alzheimer’s Disease Project identifies TRIP4 as a novel susceptibility gene. Transl Psychiatry 4:e358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Saunders AM, Strittmatter WJ, Schmechel D et al (1993) Association of apolipoprotein E allele epsilon 4 with late–onset familial and sporadic Alzheimer’s disease. Neurology 43:1467–1472

    Article  CAS  PubMed  Google Scholar 

  56. Scheltens NM, Galindo-Garre F, Pijnenburg YA et al (2016) The identification of cognitive subtypes in Alzheimer’s disease dementia using latent class analysis. J Neurol Neurosurg Psychiatry 87:235–243

    Article  PubMed  Google Scholar 

  57. Schurmann B, Wiese B, Bickel H et al (2011) Association of the Alzheimer’s disease clusterin risk allele with plasma clusterin concentration. J Alzheimers Dis 25:421–424

    PubMed  Google Scholar 

  58. Seshadri S, Fitzpatrick AL, Ikram MA et al (2010) Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA 303:1832–1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sherrington R, Rogaev EI, Liang Y et al (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375:754–760

    Article  CAS  PubMed  Google Scholar 

  60. Shulman JM, Chen K, Keenan BT et al (2013) Genetic susceptibility for Alzheimer disease neuritic plaque pathology. JAMA Neurol 70:1150–1157

    Article  PubMed  PubMed Central  Google Scholar 

  61. Slattery CF, Beck JA, Harper L et al (2014) R47H TREM2 variant increases risk of typical early-onset Alzheimer’s disease but not of prion or frontotemporal dementia. Alzheimers Dement 10:602–608.e4

    Article  PubMed  Google Scholar 

  62. Sorkin A, von Zastrow M (2009) Endocytosis and signalling: intertwining molecular networks. Nat Rev Mol Cell Biol 10:609–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Steinberg S, Stefansson H, Jonsson T et al (2015) Loss-of-function variants in ABCA7 confer risk of Alzheimer’s disease. Nat Genet 47:445–447

    Article  CAS  PubMed  Google Scholar 

  64. Strittmatter WJ, Saunders AM, Schmechel D et al (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A 90:1977–1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Szymanski M, Wang R, Bassett SS et al (2011) Alzheimer’s risk variants in the clusterin gene are associated with alternative splicing. Transl Psychiatry. doi:10.1038/tp.2011.17

    PubMed  PubMed Central  Google Scholar 

  66. Tebar F, Bohlander SK, Sorkin A (1999) Clathrin assembly lymphoid myeloid leukemia (CALM) protein: localization in endocytic-coated pits, interactions with clathrin, and the impact of overexpression on clathrin-mediated traffic. Mol Biol Cell 10:2687–2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Thambisetty M, Simmons A, Velayudhan L et al (2010) Association of plasma clusterin concentration with severity, pathology, and progression in Alzheimer disease. Arch Gen Psychiatry 67:739–748

    Article  PubMed  PubMed Central  Google Scholar 

  68. Thinakaran G, Koo EH (2008) Amyloid precursor protein trafficking, processing, and function. J Biol Chem 283:29615–29619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Velazquez P, Cribbs DH, Poulos TL et al (1997) Aspartate residue 7 in amyloid beta-protein is critical for classical complement pathway activation: implications for Alzheimer’s disease pathogenesis. Nat Med 3:77–79

    Article  CAS  PubMed  Google Scholar 

  70. Wang Y, Cella M, Mallinson K et al (2015) TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 160:1061–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Willnow TE, Andersen OM (2013) Sorting receptor SORLA – a trafficking path to avoid Alzheimer disease. J Cell Sci 126:2751–2760

    Article  CAS  PubMed  Google Scholar 

  72. Xing YY, Yu JT, Cui WZ et al (2012) Blood clusterin levels, rs9331888 polymorphism, and the risk of Alzheimer’s disease. J Alzheimers Dis 29:515–519

    CAS  PubMed  Google Scholar 

  73. Xu M, Zhao J, Zhang Y et al (2016) Apolipoprotein E gene variants and risk of coronary heart disease: a meta-analysis. Biomed Res Int. doi:10.1155/2016/3912175

    Google Scholar 

  74. Yamazaki H, Bujo H, Saito Y (1997) A novel member of the LDL receptor gene family with eleven binding repeats is structurally related to neural adhesion molecules and a yeast vacuolar protein sorting receptor. J Atheroscler Thromb 4:20–26

    Article  CAS  PubMed  Google Scholar 

  75. Zhao Z, Sagare AP, Ma Q et al (2015) Central role for PICALM in amyloid-beta blood-brain barrier transcytosis and clearance. Nat Neurosci 18:978–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ramirez.

Ethics declarations

Interessenkonflikt

I. Karaca, H. Wagner und A. Ramirez geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaca, I., Wagner, H. & Ramirez, A. Suche nach Risikogenen bei der Alzheimer-Erkrankung. Nervenarzt 88, 744–750 (2017). https://doi.org/10.1007/s00115-017-0354-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-017-0354-7

Schlüsselwörter

Keywords

Navigation